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a b s t r a c t 

Evidence of excessive comovement among stocks following index additions (Barberis, 

Shleifer, and Wurgler, 2005) and stock splits (Green and Hwang, 2009) challenges tradi- 

tional finance theory. We show that the bivariate regressions in this literature provide little 

information about the economic magnitude of excess comovement, with coefficients that 

are sensitive to unrelated factors. Using robust univariate regressions and matched con- 

trol samples, almost all evidence of excess comovement disappears. In both examples, the 

stocks exhibit strong returns prior to the event, akin to momentum winners. We document 

that winner stocks exhibit increases in betas, generating much of the apparent excess co- 

movement. 

© 2016 Elsevier B.V. All rights reserved. 
1. Introduction 

In a perfect and frictionless financial market, asset 

prices change to reflect new information about future cash 

flows and discount rates. To the extent that there are com- 

mon factors affecting either cash flows or discount rates, 

asset prices will move together to reflect innovations in 

such common factors. 

However, there is growing evidence that prices move 

together for reasons that are seemingly unrelated to 

fundamentals. Evidence of this excess comovement has 

been found among S&P500 index additions and deletions 
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( Vijh, 1994; Barberis, Shleifer, and Wurgler, 2005 ), changes 

in S&P500 value and growth indexes ( Boyer, 2011 ), changes 

in the Nikkei 225 index ( Greenwood and Sosner, 2007 ), 

changes in UK indexes ( Mase, 2008 ), changes in Nikkei 225 

index weights ( Greenwood, 2008 ), additions to many na- 

tional market indexes ( Claessens and Yafeh, 2013 ), stock 

splits ( Green and Hwang, 2009 ), stocks with correlated 

trading among retail investors ( Kumar and Lee, 2006 ), 

stocks with corporate headquarters in the same geographic 

area ( Pirinsky and Wang, 2006 ), stocks with similar institu- 

tional ownership ( Pindyck and Rotemberg, 1993 ), stocks in 

closed-end country funds ( Hardouvelis, Porta, and Wizman, 

1994; Bodurtha, Kim, and Lee, 1995 ), stocks in closed-end 

domestic funds ( Lee, Shleifer, and Thaler, 1991 ), sovereign 

bonds ( Rigobon, 2002 ), information spillovers of highly fol- 

lowed firms ( Hameed, Morck, Shen, and Yeung, 2015 ), and 

commodity futures ( Tang and Xiong, 2012 ). 

Even though excessive comovement in stock returns 

is attributed to several nonfundamental factors, 3 the 
3 Barberis, Shleifer, and Wurgler (2005) propose three sources of fric- 

tion and investor sentiment. Excess investor demand for a particular 
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primary explanation is an asset class effect, which is cre-

ated by correlated demand unrelated to fundamentals for

assets in a particular class. Theoretical models developed

by Basak and Pavlova (2013), DeMarzo, Kaniel, and Kre-

mer (2004) , and Barberis and Shleifer (2003) , among oth-

ers, are consistent with such an asset class effect. However,

the sources of this correlated demand are varied: investor

behavior that causes investors to choose stocks based on

styles or categories ( Barberis and Shleifer, 2003 ); agents

who care about relative wealth choosing assets held by

other members of the community ( DeMarzo, Kaniel, and

Kremer, 2004 ); or institutional investors who care about

their performance relative to an index tilting their port-

folios toward stocks that are in that index ( Basak and

Pavlova, 2013 ). 

Two papers, von Drathen (2014) and Kasch and Sarkar

(2014) , challenge the empirical evidence mentioned above

in the context of two specific events: FTSE 100 and S&P500

index turnover, respectively. 4 They both point out that

these events coincide with changes in fundamentals. Our

focus is on providing a more general view of the issue and

regression results in the existing literature and on under-

standing the mechanisms that underlie the link between

momentum and comovement. 

Accordingly, in this article, we reexamine the evidence

on comovement, focusing on two studies that document

what appears to be strong support for this phenomenon

but in apparently unrelated contexts. The first is Barberis,

Shleifer, and Wurgler (2005) , which is considered a classic

paper on comovement. Their sample consists of stocks that

enter or leave the S&P500—an event that has been used

by many other studies because index changes are generally

believed to have little fundamental effect on the firm being

added to or deleted from the index ( Chen, Noronha, and

Singal, 2004; Elliott, Van Ness, Walker, and Wan, 2006 ).

Their hypothesis is that stocks in the index comove more

with index stocks, whereas those not in the index comove

more with nonindex stocks. The second paper is Green

and Hwang (2009) , who study comovement before and af-

ter stock splits. Specifically, their argument is that stocks

with similar price levels comove more than would be jus-

tified by fundamentals, that is, that a stock moves more
group of securities may arise because of investor awareness (habitat) or 

because those stocks form an asset class that is easy to follow (category). 

Third, the speed of information diffusion may increase for stocks included 

in the index. Similar arguments are in Hou and Moskowitz (2005) and 

Pindyck and Rotemberg (1993) . Improvement in price discovery would 

cause the added stock to comove more strongly with index stocks than 

with nonindex stocks. Because it is difficult to empirically distinguish be- 

tween the first two views, Greenwood (2008) combines them into a single 

demand-based theory, or an asset class effect. The last source of friction, 

quicker adjustment in prices to new information, is a desirable outcome 

of index additions because it makes prices more efficient even though it 

may increase comovement. In other words, there was too little comove- 

ment in the absence of efficient information diffusion, which has now 

been increased to an appropriate level ( Claessens and Yafeh, 2013 ). Other 

explanations relate to transactions costs at an index level versus an in- 

dividual stock level. However, we focus on the asset class effect as the 

generally accepted source of comovement. 
4 An earlier version of Kasch and Sarkar (2014) had the same title as 

our paper, “Comovement revisited.” Their new title, “Is there an S&P500 

index effect?,” reflects the more specific focus on both valuation and co- 

movement attributed to index additions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with high-priced stocks prior to a split and more with low-

priced stocks after a split. As with index changes, splits ap-

pear to be useful events to study because they do not af-

fect splitting firms in any fundamental way, although the

announcement may signal private information. 

In both cases, the primary evidence is in the form

of differences between the coefficients in two regressions

conducted before and after the event: ( 1 ) a univariate re-

gression of the stock return on the return of the group it

is joining, and ( 2 ) a bivariate regression of the stock re-

turn on the returns of both the old group and the new

group. The bivariate regression results in Barberis, Shleifer,

and Wurgler (2005) show that for additions to the S&P500

index, their coefficient on S&P500 returns increases dra-

matically after they join the index while the coefficient on

nonindex stocks declines. In a similar vein, the bivariate

regression results in Green and Hwang (2009) show that

stocks after a split load more heavily on low-priced stocks

(the new group) and less on high-priced stocks (the old

group). 

To better understand the implications of the excess co-

movement hypothesis for stock returns, we first develop a

model closely related to that of Barberis, Shleifer, and Wur-

gler (2005) . Some implications of our model are similar to

those derived in their paper, but we highlight four addi-

tional important implications. 

First, the model suggests that a univariate regression of

the stock return on the return of the old group after the

event can be very informative—a specification not exam-

ined in Barberis, Shleifer, and Wurgler (2005) or Green and

Hwang (2009) . 

Second, the model indicates that the results of the

bivariate regressions estimated by Barberis, Shleifer, and

Wurgler (2005) and Green and Hwang (2009) are ex-

tremely sensitive to small changes in parameters. The sen-

sitivity of these types of regression coefficients has been

documented in the literature ( Spanos and McGuirk, 2002 )

and is also noted in the context of index changes by Kasch

and Sarkar (2014) . Most critically for our analysis, this sen-

sitivity implies that the interpretation of these coefficient

estimates is not straightforward and that they may well

provide little or no information about the question of eco-

nomic interest—how much, if at all, is excess comovement

responsible for the variation in stock returns. 

Third, the model shows that changes in the parameters

around the events, in particular shifts in loadings on the

fundamental factor, can affect the univariate regression re-

sults. For example, an increase in the beta of a stock in the

sample will generate an increase in the coefficient of the

stock on the new group return after the event. In other

words, these empirical results are also consistent with a

change in fundamental comovement, not just excess co-

movement. Of course, this phenomenon also has implica-

tions for the univariate regression of the stock return on

the old group return discussed above, and, in fact, it is this

regression that allows us to distinguish between the two

competing explanations. 

Finally, the model shows that shifts around the event

in the fundamental loadings and idiosyncratic risk of the

group returns can cause significant shifts in the bivari-

ate regression coefficients, even in a world with no excess
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raneously and independently. The key distinction between the two papers 

is that we focus more generally on comovement, with a formal analysis 

of the methodological issues involved, while Kasch and Sarkar (2014) fo- 

cus specifically on both the valuation and comovement effects associated 

with S&P500 index changes. We also document the more general pattern 

in the changes in betas of momentum stocks. 
comovement. For example, if the idiosyncratic risk of the 

return on one group increases, the bivariate regression will 

shift weight from the return of this group to that of the 

other. In this regression both groups serve as proxies for 

the fundamental factor. The magnitude of idiosyncratic risk 

relative to fundamental risk determines a group’s quality 

as a proxy and thus also the relative magnitude of its co- 

efficient. 

We begin our empirical analysis by reexamining co- 

movement following index changes. We expand the 

Barberis, Shleifer, and Wurgler (2005) sample period of 

1976–20 0 0 to 1976–2012, 5 using daily data, for which they 

report their strongest results. In general, based on the two 

univariate regressions, we find that stocks added to the 

S&P500 index move more with the S&P500 index, but 

they also move more with the old group of non-S&P in- 

dex stocks. The difference in beta changes is not signifi- 

cant for the 1976–1987 period, nor is it significant for the 

2001–2012 period. The difference in beta changes is, how- 

ever, significant for the 1988–20 0 0 period. As in Barberis, 

Shleifer, and Wurgler (2005) , the bivariate regression re- 

sults show a significant increase in beta relative to the 

S&P500 index and a significant decrease in beta relative to 

the old group. 

For the stock split sample, evidence in support of co- 

movement is essentially nonexistent when the univariate 

regressions are analyzed: the increase in beta between re- 

turns on splitting stocks and returns on the new group 

(i.e., low-priced stocks) is almost equal to the increase in 

beta between returns on splitting stocks and returns on 

the old group (i.e., high-priced stocks). The bivariate re- 

gressions again show an increase in the beta with the new 

group, although there is no statistically significant decrease 

in beta relative to the old group. 

These initial empirical results for the univariate regres- 

sions indicate that it may be increases in the fundamen- 

tal betas of the stocks around the events that are driving 

much of the results reported in the literature as excess 

comovement. The natural question is, why do these be- 

tas increase, that is, what do stocks added to the S&P500 

and those undergoing splits have in common? The answer 

is that both groups of stocks exhibit exceptional perfor- 

mance prior to the event. In the language of the litera- 

ture on cross-sectional momentum effects, they are win- 

ners. Following the usual momentum methodology, we 

find that betas of winner stocks increase during the for- 

mation period and continue to increase during the hold- 

ing period before declining at longer horizons. Therefore, 

it is likely that at least some of the results reported 

by Barberis, Shleifer, and Wurgler (2005) and Green and 

Hwang (2009) are caused by the inclusion of momentum 

stocks in their samples. Consistent with this interpretation, 

Kasch and Sarkar (2014) highlight the importance of mo- 

mentum in explaining both the comovement and perma- 
6 
nent value effects associated with index inclusion. 

5 Although our analysis includes the year 2013, we end the S&P addi- 

tions sample in 2012 because we need one year of data after the event to 

compute regression coefficients. 
6 The empirical results in this paper and those in Kasch and Sarkar 

(2014) on comovement around index additions were produced contempo- 
For the bivariate regression results, shifts around the 

event in the fundamental loadings and idiosyncratic risk of 

the group returns can cause exactly these types of effects, 

even in a world with no excess comovement. 

Given the apparent importance of fundamental stock 

betas and shifts in the characteristics of the group returns, 

we next turn to a more refined analysis that attempts to 

better measure and control for these changes. First, we im- 

prove the estimation of the betas by employing a Dimson 

(1979) approach to adjust for nonsynchronous trading us- 

ing leads and lags of the relevant indexes in the regres- 

sions. 7 Even though the S&P500 index consists of some of 

the largest stocks in the U.S. economy, index changes are 

concentrated mainly among the smaller stocks in the in- 

dex. Similarly, the trading frequency of stocks that split 

may differ from that of the stocks in either the low- or 

high-priced indexes that we construct. We add two leads 

and lags of the index returns to pick up these effects. 

Second, we control for the additional effects of changes 

in the idiosyncratic risk and fundamental factor loading of 

group returns on measured comovement using a matched- 

sample approach. For each index change and stock split, 

we choose a firm in the same size decile that comes clos- 

est based on momentum, that is, has a similar return over 

the past year. If beta changes are driven primarily by mo- 

mentum, these stocks will exhibit similar changes to those 

in the S&P addition and stock split samples. We then adopt 

a difference in difference in difference approach, examin- 

ing the differences in the changes of the betas before and 

after the event across the stocks in the original sample 

and the matched sample. If changes in the properties of 

group returns are driving the bivariate regression results, 

then matched stocks will exhibit similar patterns in their 

regression coefficients, even though they did not change 

groups around the event. 

The empirical results from this refined analysis are 

striking. For both S&P500 index additions and stock splits, 

the original sample and matched-sample stocks exhibit dif- 

ferences in beta changes that are not significantly differ- 

ent. In other words, the differences between the changes 

across the two univariate regressions are statistically indis- 

tinguishable for the sample and control stocks. 8 This re- 

sult is compelling evidence that the apparent excess co- 

movement is actually driven by changes in loadings on the 

fundamental component of returns, not by asset class ef- 

fects. The control stocks also show similar changes in bi- 

variate regression coefficients before and after the event to 
7 Barberis, Shleifer, and Wurgler (2005) conduct a similar analysis, al- 

though their motivation is to assess the degree to which their results 

can be explained by what they call slow information diffusion. Vijh 

(1994) also employs the Dimson correction. 
8 Kasch and Sarkar (2014) report a similar result for S&P500 inclusions 

although they also match stocks on changes in earnings, which we do not 

need. In addition, they do not examine results from bivariate regressions 

discussed in prior work that we extensively address in this article. 
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which the sample stocks are subject. Thus, the properties

of group returns, not excess comovement, are clearly re-

sponsible for the anomalous results in the original sam-

ples. Moreover, this result is not simply an artifact of lim-

ited statistical power. The point estimates indicate that ex-

cess comovement is not economically significant either. 

A breakdown of our two adjustments—that is, the

Dimson adjustment and the matched-sample adjustment—

shows that their importance differs dramatically for the

two samples. For the stock split sample, the Dimson ad-

justment does little, but the momentum control is critical

because these stocks exhibit very strong past performance

and resulting beta changes. In contrast, for the S&P500 in-

dex addition sample, the momentum effect is somewhat

weaker and both adjustments are necessary. The differ-

ential momentum effect is consistent with a significantly

greater proportion of winner stocks that split than the pro-

portion of winner stocks that are added to the S&P500

index. The Dimson adjustment becomes more important

for S&P500 additions because the added stocks are among

the smallest firms in the index, which can induce spuri-

ous cross-serial correlation between additions and the in-

dex, unlike for stock splits where relative sizes of splitting

stocks and other stocks are not likely to be different. 

The article is organized as follows. In the next sec-

tion, we introduce the model and examine its implica-

tions for univariate and bivariate regressions. Section 3 de-

scribes the data and methodology for momentum, index

changes, and stock splits. Section 4 contains the main em-

pirical results for the original sample. In Section 5 , we re-

visit the model in light of these initial results, investigat-

ing specifically the effects of shifts in the parameters. In

Section 6 , we examine the link between momentum and

beta changes and then reexamine the data in the light

of this evidence. We perform several robustness checks in

Section 7 , and conclude in Section 8 . 

2. A model 

To understand the implications of the regression results

reported in the literature for the economic importance of

the excess comovement phenomenon, it is useful to write

down a relatively simple and stylized model in which the

coefficients in these regressions can be calculated in closed

form. Our goal is not to fully capture reality, but rather,

in the spirit of the model in Barberis, Shleifer, and Wur-

gler (2005) , to generate some general insights and predic-

tions that we can use to interpret the subsequent empiri-

cal results. Our model is not identical to that in Barberis,

Shleifer, and Wurgler (2005) , although the key predictions

are similar, because we want to construct the simplest pos-

sible model that both highlights the features of the uni-

variate and bivariate regressions that we believe are impor-

tant and captures the essence of the excess comovement

hypothesis. 

2.1. Setup and assumptions 

Denote as y t the return on a stock that is changing

membership between groups 1 and 2 with returns x 1 t and

x t , respectively, for example, non-S&P and S&P stocks or
2 
high-priced and low-priced stocks: 

y t = b yt f t + c 1 t u 1 t + c 2 t u 2 t + e yt 

x 1 t = b 1 t f t + u 1 t + e 1 t 

x 2 t = b 2 t f t + u 2 t + e 2 t 

var ( e it ) ≡ σ 2 
eit var ( u it ) ≡ σ 2 

uit var ( f t ) ≡ σ 2 
f t , (1)

where f is the fundamental, common return shock, which

could easily be extended to a multifactor context; u i are

group-specific, nonfundamental return shocks; and e i are

idiosyncratic fundamental return shocks. 

For identification purposes assume 

cov ( u 1 t , u 2 t ) = 0 

cov ( u it , f t ) = cov ( e jt , f t ) = 0 ∀ i, j 

cov ( u it , e jt ) = 0 ∀ i, j . (2)

That is, nonfundamental, group-specific shocks are as-

sumed to be uncorrelated across groups; the common fun-

damental factor is uncorrelated with the other shocks;

and the idiosyncratic, fundamental shocks are uncorrelated

with the nonfundamental shocks. 

The economic content of the excess comovement hy-

pothesis is a statement about the loadings of stock y on

the two nonfundamental, group-specific shocks, u 1 and u 2 .

Specifically, using underbars and overbars to denote values

prior to and after the stock switches from group 1 to group

2, the theoretical predictions of this hypothesis are 

c 1 t = c 1 > 0 c 2 t = 0 

c̄ 1 t = 0 c̄ 2 t = c̄ 2 > 0 , (3)

that is, there is a zero loading on the group-specific shock

of the group to which the stock does not belong, and a

positive loading on the group-specific shock of the group

to which the stock does belong. We also assume that all

the other parameters of the model are constant in each

subperiod, that is, the periods before and after the move of

stock y between the groups, but that they can vary across

the subperiods. As above, we use underbars and overbars

to designate these parameters. 

2.2. Assessing the economic magnitude of excess 

comovement 

The goal of our empirical analysis is to assess the eco-

nomic magnitude of excess comovement. In the context of

the model above, a natural measure of this quantity is the

fraction of the variation in stock y ’s return that is due to

excess comovement, both prior to and after the event: 

c 2 1 σ
2 
u 1 

σ 2 
y 

and 

c̄ 2 2 ̄σ
2 
u 2 

σ̄ 2 
y 

. (4)

This measure is equivalent to the R -squared one would

get if one regressed the stock return on the nonfunda-

mental component of the corresponding group return. The

analogous quantities for the group returns are 

σ 2 
u 1 

σ 2 
x 1 

, 
σ̄ 2 

u 1 

σ̄ 2 
x 1 

, 
σ 2 

u 2 

σ 2 
x 2 

, and 

σ̄ 2 
u 2 

σ̄ 2 
x 2 

, (5)

that is, the fraction of the variance of group returns ex-

plained by the nonfundamental component. 



628 H. Chen et al. / Journal of Financial Economics 121 (2016) 624–644 

 

9 See Appendix A for details. This result is not identical to that 

in Barberis, Shleifer, and Wurgler (2005) . Specifically, their result is 

slightly weaker: β
1 b 

= 1 , β
2 b 

= 0 0 < β̄1 b < 1 , 0 < β̄2 b < 1 , β̄1 b + β̄2 b = 

1 . This difference is due to the fact that Barberis, Shleifer, and Wur- 

gler (2005) assume a multifactor structure for fundamentals, where each 

group loads on a common factor and its own, unique fundamental shock. 

Barberis, Shleifer, and Wurgler (2005) also allow for correlation across the 

group-specific, nonfundamental shocks. 
10 While this appears to be a strong assumption, it is essentially equiv- 

alent to saying that stock y is an “average” stock in both groups 1 and 2. 

This assumption is unlikely to be strictly true, but it may be a reasonable 

first approximation. 
In the literature, the focus is on two regressions run 

both before and after the stock switches groups—a uni- 

variate regression of the stock return on the return of 

the group that it is joining and a bivariate regression on 

the returns of both groups. As we argue below, a third 

regression—a univariate regression of the stock return on 

the group that it is leaving—is also informative. Therefore, 

consider the following three regressions run pre- and post- 

switch: 

y t = α + β1 x 1 t + ε t 

y t = α + β2 x 2 t + ε t 

y t = α + β1 b x 1 t + β2 b x 2 t + ε t . (6) 

The probability limits of the univariate regression coef- 

ficients under the model above are 

β
1 

= 

b y b 1 σ
2 
f 
+ c 1 σ

2 
u 1 

σ 2 
x 1 

β̄1 = 

b̄ y ̄b 1 ̄σ
2 
f 

σ̄ 2 
x 1 

σ 2 
x 1 = b 

2 
1 σ

2 
f + σ 2 

u 1 + σ 2 
e 1 σ̄ 2 

x 1 = b̄ 2 1 ̄σ
2 
f + σ̄ 2 

u 1 + σ̄ 2 
e 1 

β
2 

= 

b y b 2 σ
2 
f 

σ 2 
x 2 

β̄2 = 

b̄ y ̄b 2 ̄σ
2 
f 

+ c̄ 2 ̄σ
2 
u 2 

σ̄ 2 
x 2 

σ 2 
x 2 = b 

2 
2 σ

2 
f + σ 2 

u 2 + σ 2 
e 2 σ̄ 2 

x 2 = b̄ 2 2 ̄σ
2 
f + σ̄ 2 

u 2 + σ̄ 2 
e 2 . (7) 

For the bivariate regression 

β
1 b 

= 

1 

1 − ρ2 
x 1 ,x 2 

[
β

1 
− ρ

x 1 ,x 2 

σ x 2 

σ x 1 

β
2 

]

β
2 b 

= 

1 

1 − ρ2 
x 1 ,x 2 

[
β

2 
− ρ

x 1 ,x 2 

σ x 1 

σ x 2 

β
1 

]

β̄1 b = 

1 

1 − ρ̄2 
x 1 ,x 2 

[
β̄1 − ρ̄x 1 ,x 2 

σ̄x 2 

σ̄x 1 

β̄2 

]

β̄2 b = 

1 

1 − ρ̄2 
x 1 ,x 2 

[
β̄2 − ρ̄x 1 ,x 2 

σ̄x 1 

σ̄x 2 

β̄1 

]

ρ
x 1 ,x 2 

= 

cov ( x 1 , x 2 ) 

σ x 1 σ x 2 

cov ( x 1 , x 2 ) = b 1 b 2 σ
2 
f + cov ( e 1 , e 2 ) 

ρ̄x 1 ,x 2 = 

cov ( ̄x 1 , ̄x 2 ) 

σ̄x 1 ̄σx 2 

cov ( ̄x 1 , ̄x 2 ) = b̄ 1 ̄b 2 ̄σ
2 
f + cov ( ̄e 1 , ̄e 2 ) 

(8) 

(see Appendix A for detailed derivations). 

Furthermore, if the basic parameters of the model (the 

weights on the common factor, the variances of the non- 

fundamental shocks, and the variances of the fundamental 

shocks) are constant over time, which is the motivation be- 

hind looking at events that are apparently unconnected to 

fundamentals, that is, 

b i = b̄ i ≡ b i σ 2 
ui = σ̄ 2 

ui ≡ σ 2 
ui > 0 

σ 2 
ei = σ̄ 2 

ei ≡ σ 2 
ei i = 1 , 2 

b y = b̄ y ≡ b y σ 2 
ey = σ̄ 2 

ey ≡ σ 2 
ey σ 2 

f = σ̄ 2 
f ≡ σ 2 

f , (9) 

then 

β
1 

> β̄1 β
2 

< β̄2 

β
1 b 

> β̄1 b β
2 b 

< β̄2 b (10) 

(again, see Appendix A for details). Intuitively, when the 

stock switches from group 1 to group 2, it begins to move 
with the nonfundamental shock to group 2 and ceases to 

move with the nonfundamental shock to group 1; there- 

fore, its coefficient on group 1 returns decreases, and its 

coefficient on group 2 returns increases, both in a univari- 

ate and a bivariate context. 

If we further assume that (1) the groups are funda- 

mentally well-diversified, that is, there is no idiosyncratic 

fundamental shock at the group level ( σ 2 
e 1 = σ 2 

e 2 = 0 ); (2) 

stock y has a loading of one on the nonfundamental group 

shock, that is, c 1 = c̄ 2 = 1 ; and (3) the loadings on the 

fundamental shocks are all equal to unity, that is, b y = 

b 1 = b 2 = 1 ; then we get a result that is analogous to the

more specific result contained in Prediction 2 of Barberis, 

Shleifer, and Wurgler (2005) : 9 

β
1 b 

= 1 , β
2 b 

= 0 β̄1 b = 0 , β̄2 b = 1 . (11) 

This result is important because it illustrates a flaw in 

the interpretation of the bivariate regression coefficients. 

From an economic standpoint, we are not directly inter- 

ested in these coefficients; the key parameters are the 

loadings of the stock return on the various factors in 

Eq. (1) and the variances of these factors, which deter- 

mine the measures of excess comovement defined in Eqs. 

(4) and ( 5 ) above. However, under the assumptions out- 

lined above, the bivariate regression coefficients are com- 

pletely independent of the variances of the nonfundamen- 

tal component of group and stock returns as long as these 

quantities are strictly positive. Thus, even when the non- 

fundamental component of both stock y and group re- 

turns is economically meaningless, in the sense that it con- 

tributes essentially nothing to the variability of returns, the 

bivariate coefficients appear to suggest a dramatic and eco- 

nomically meaningful change in the comovement proper- 

ties of stock returns as a stock switches groups. 

Of course, this extreme invariance result does depend 

on the assumed factor loadings, specifically, the fact that 

the stock y and the groups load equally on both the fun- 

damental and nonfundamental factors. 10 However, in more 

general settings, it is still the case that the coefficients in 

the bivariate regression are sensitive to small changes in 

the parameters of the driving processes, and their mag- 

nitudes do not reflect the quantities of economic interest. 

The intuition is that all reasonably well-diversified stock 

portfolios tend to be very highly correlated. Thus, the cor- 

relation between the returns on the two groups of stocks 

will be close to one. This issue is the multicollinearity 

in the bivariate regression that is discussed in Barberis, 

Shleifer, and Wurgler (2005) . As they rightly point out, 

multicollinearity does not affect the consistency of the 
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11 We limit our main analysis to index additions with share codes of 10 

and 11 to remain consistent with Barberis, Shleifer, and Wurgler (2005) . 

However, the results are similar if the sample contains all index additions. 

Index deletions are discussed separately in Section 7. 
12 For consistency with their results, we only include stock splits iden- 

tified by CRSP with a distribution code 5523. However, inclusion of stock 

splits with a CRSP distribution code 5533 produces similar results. 
13 Although our analysis includes data until 2013, the sample ends in 

2011 because we are evaluating beta changes up to two years after for- 

mation of momentum portfolios. 
estimates in ordinary least squares. However, as the ex-

ample above illustrates, the magnitudes of the coefficients

in the bivariate regression may tell us very little, or even

nothing, about what we really want to know, that is, how

much excess comovement affects returns. This concern is

especially relevant if the strong assumptions above about

the stability of the parameters across the two subperiods,

which are critical in deriving the results, are not valid. 

Fortunately, the coefficients in the univariate regres-

sions isolate precisely the quantities of interest. Going back

to the more general assumptions about stability of the pa-

rameters across the subperiods but making no assumptions

about the magnitudes of the factor loadings, the differ-

ences between these coefficients pre- and post-switch are

(see Appendix A for details): 

β̄1 − β
1 

= − c 1 σ
2 
u 1 

σ 2 
x 1 

β̄2 − β
2 

= 

c̄ 2 σ
2 
u 2 

σ 2 
x 2 

. (12)

Thus, empirical evidence that the coefficient on the re-

turn of the group to which a stock is moving (group 2)

increases after the switch would appear to be strong evi-

dence of excess comovement. The magnitudes of these dif-

ferences are also informative about the economic impor-

tance of this phenomenon. Assuming the loadings on non-

fundamental group shocks equal one, which will be true

on average because the shock at the group level is the

value-weighted average of the shocks to the stocks within

the group, these quantities are the fraction of the variation

of group returns explained by excess comovement. For ex-

ample, an increase of 0.1 in the beta on group 2 or a sim-

ilar decrease in the beta on group 1 would indicate that

10% of the variation in group returns is due to excess co-

movement. Multiplying this number by the ratio of group

variance to stock variance will yield the corresponding R -

squared for individual stocks. 

Finally, one might think that the problems in the bi-

variate regression are due solely to the multicollinearity

problem associated with the high correlation between the

group returns. This conjecture is not true, because orthog-

onalizing the variables is not a complete solution. Con-

sider, for example, a trivariate regression of the stock re-

turn on the fundamental factor and the components of

the two group returns that are orthogonal to this factor—

the nonfundamental factor and the idiosyncratic shock.

In this regression, the magnitudes of the coefficients on

these orthogonal components are relatively uninformative

about the economic magnitude of excess comovement,

completely so when the group returns are perfectly well

diversified. These coefficients will equal the stock’s load-

ings on the nonfundamental shocks, c i , but they contain

no information about the variance of these shocks, σ 2 
ui 

, the

key terms in Eqs. (4) and ( 5 ). In the more general setting,

changes in the magnitude of idiosyncratic volatility at the

group level also affect these coefficients. 

3. Data and empirical methodology 

Given these preliminary theoretical results, we turn to

a reexamination of the empirical evidence in the next
section, preceded in this section by a brief description

of the data and the empirical methodology. The Center

for Research in Security Prices (CRSP) stock files at the

University of Chicago and Standard & Poor’s are the pri-

mary sources of data. In general, we follow the method-

ologies in Barberis, Shleifer, and Wurgler (2005) and Green

and Hwang (2009) for constructing our tests. For index

changes, we follow the methodology of Barberis, Shleifer,

and Wurgler (2005) except that we use only daily data be-

cause their results are weaker with weekly and monthly

data. Barberis, Shleifer, and Wurgler (2005) use additions

to the S&P500 from 1976 to 20 0 0 and deletions from

1979 to 20 0 0, whereas our initial sample extends from

1976 to 2012 for index additions. 11 However, our subperiod

analysis corresponds to their subperiods. Index deletions

are evaluated for robustness in Section 7 . Like Barberis,

Shleifer, and Wurgler (2005) , we estimate betas in the

preinclusion period using 12 months of data ending the

month before the announcement of the stock’s addition to

the S&P500 and betas in the postinclusion period using 12

months of data starting the month after the inclusion of

the stock in the S&P500. 

For stock splits, we follow the methodology in Green

and Hwang (2009) and the clarifications obtained directly

from the authors. Like Green and Hwang (2009) , our

sample consists of all common stocks where the stock

price was $10 or more before the stock split. 12 The high-

price index consists of stocks whose prices are ±25% of the

price of the splitting stock just prior to the split. The low-

price index consists of all stocks whose price is above $5

and within ±25% of the postsplit price calculated based on

the presplit price and the split ratio. The Green and Hwang

(2009) sample covers the period 1971–2004. We extend

this sample to 2012, and after replicating their results for

their original subperiods, we use the same subperiods as

in the S&P additions sample for subsequent analysis. 

For momentum, which will become an important con-

trol variable, we follow a methodology that is similar to

that in Jegadeesh and Titman (2001) and form momentum

portfolios using a 12-month formation period, one skip

month, and 12-month holding period. More specifically, at

the end of each June from 1976 through 2011, stocks with

a price of at least $10 that do not fall into the bottom

size decile of NYSE stocks are assigned to ten momentum

deciles based on their cumulative returns over the preced-

ing 252 days. 13 We estimate betas for each stock based on

a rolling window of 252 days from two years before for-

mation of momentum portfolios through two years after

formation, and compare beta changes for the top and bot-

tom momentum portfolios. Thus, betas for years –2 and –

1 are estimated over rolling windows ending 504 and 252
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Table 1 

S&P additions. 

We estimate the univariate and bivariate regressions 

y t = α + β1 x 1 t + ε t 
y t = α + β2 x 2 t + ε t 
y t = α + β1 b x 1 t + β2 b x 2 t + ε t 

for a sample of stocks that are added to the S&P500 index from 1976 through 2012. The pre-event estimation period covers a one-year window ending 

at the end of the month preceding announcement, while the postevent period covers the one-year window starting the month after the effective date 

of index change. x 1 t and x 2 t are returns to non-S&P500 index and S&P500 index at time t. Panel A reports the univariate regression results, and Panel B 

reports the bivariate regression results. In each cell, the first number is the mean, and the second number is the corresponding t -statistic, where standard 

errors are clustered by month. 

Panel A: Univariate regressions 

Non-S&P500 S&P500 Diff. of diff. 

Sample period nobs β
1 

β̄1 �β1 β
2 

β̄2 �β2 �β2 − �β1 

1976–1987 197 1 .271 1 .313 0 .042 0 .962 1 .024 0 .062 0 .020 

29 .422 27 .202 1 .055 24 .643 26 .830 2 .305 0 .763 

1988–20 0 0 269 1 .263 1 .278 0 .015 0 .984 1 .198 0 .214 0 .199 

29 .839 27 .503 0 .313 24 .669 23 .830 6 .243 4 .938 

2001–2012 214 1 .050 1 .125 0 .075 1 .086 1 .157 0 .071 –0 .004 

30 .548 28 .736 2 .496 27 .526 35 .741 2 .439 –0 .137 

1976–2012 680 1 .198 1 .240 0 .042 1 .010 1 .134 0 .125 0 .083 

49 .851 46 .610 1 .734 43 .566 44 .294 6 .556 4 .080 

Panel B: Bivariate regressions 

Non-S&P500 S&P500 Diff. of diff. 

Sample period nobs β
1 b 

β̄1 b �β1 b β
2 b 

β̄2 b �β2 b �β2 b − �β1 b 

1976–1987 197 0 .907 0 .632 –0 .274 0 .340 0 .602 0 .262 0 .537 

15 .366 11 .692 –4 .627 5 .884 10 .626 5 .733 5 .377 

1988–20 0 0 269 1 .011 0 .647 –0 .364 0 .281 0 .667 0 .386 0 .750 

23 .314 11 .554 –5 .877 10 .557 18 .177 8 .789 7 .373 

2001–2012 214 0 .951 0 .691 –0 .260 0 .127 0 .473 0 .347 0 .607 

13 .407 9 .456 –4 .323 2 .229 9 .323 6 .379 5 .414 

1976–2012 680 0 .962 0 .657 –0 .305 0 .249 0 .587 0 .338 0 .643 

29 .394 18 .504 –8 .708 9 .143 21 .347 12 .249 10 .675 

2 

14 Standard & Poor’s did not publicly announce index changes until 

September 1976. Therefore, the first period begins in September 1976. 

However, for ease of reference, we term the period 1976–87. 
trading days before portfolio formation, respectively. Post- 

formation momentum portfolio betas allow for a 21- 

trading day skip, and are estimated over 252 days, ending 

273 and 525 trading days after portfolio formation. The top 

return decile and the bottom return decile in the formation 

period are identified as winner stocks and loser stocks, re- 

spectively. 

4. Reexamining the empirical evidence 

The first step in our analysis is to re-create, extend, 

and reexamine the univariate and bivariate regressions re- 

ported in the literature for the S&P500 index addition and 

stock split samples, given the insights from the model in 

Section 2 . These are the regressions specified in Eq. (6) , 

and they are estimated twice: once before the event and 

once after. Note that the first regression, the return on the 

stock on the return of the group that it is leaving, is not 

examined in the literature. The implications of the coeffi- 

cients in these regressions for the excess comovement hy- 

pothesis are discussed in Section 2.2 . 

The results are presented in Tables 1 and 2 for S&P500 

index additions and stock splits, respectively. In each case, 
Panel A shows the univariate regression results and Panel B 

the bivariate regression results. In Panel A, the set of three 

columns beginning with the third column contain the be- 

tas relative to the old group portfolio (nonindex stocks or 

high-priced stocks) before and after the event and the as- 

sociated changes; the next set of three columns contain 

the analogous numbers relative to the new group portfo- 

lio; and the final column shows the difference between the 

changes in the two coefficients across the event. Panel B is 

organized in the same way except that the coefficients are 

those on the two group returns in the bivariate regressions 

before and after the event. 

Turning first to the S&P500 additions sample, the re- 

sults from the univariate regressions on the S&P500 in- 

dex (the new group, i.e., group 2) for two subperiods, 

1976–1987 and 1988–20 0 0, are consistent with those re- 

ported by Barberis, Shleifer, and Wurgler (2005) in their 

Panel A of Table 1. 14 For 1976–1987, we report a change 

in beta of 0.062 ( �β ) based on a sample of 197 index 
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Table 2 

Stock splits. 

We estimate the univariate and bivariate regressions 

y t = α + β1 x 1 t + ε t 
y t = α + β2 x 2 t + ε t 
y t = α + β1 b x 1 t + β2 b x 2 t + ε t 

for a sample of two-for-one stock splits from 1971 through 2012. Our sample includes all ordinary common stock two-for-one splits with a presplit price 

of $10 or greater during our sample period. x 1 t and x 2 t are return to a portfolio of high-priced stocks whose price belongs to [3p/4, 5p/4] and low-priced 

stocks with prices within [1p/4, 3p/4] at time t , where p is the presplit price before effective date of split. The pre-event (postevent) window is defined as 

the one year ending (beginning) one month before (after) the split date. Panel A reports the univariate regression results, and Panel B reports the bivariate 

regression results. In each cell, the first number is the mean, and the second number is the corresponding t -statistic, where standard errors are clustered 

by month. 

Panel A: Univariate regressions 

High-priced group Low-priced group Diff. of diff. 

Sample period nobs β
1 

β̄1 �β1 β
2 

β̄2 �β2 �β2 − �β1 

1971–1990 2350 0 .736 0 .929 0 .193 0 .847 1 .043 0 .196 0 .002 

48 .771 54 .709 17 .138 49 .059 60 .555 18 .554 0 .443 

1991–2004 2478 0 .798 1 .014 0 .216 0 .937 1 .186 0 .248 0 .033 

45 .714 43 .778 11 .102 43 .783 39 .479 12 .020 3 .448 

1976–1987 1867 0 .729 0 .919 0 .190 0 .847 1 .036 0 .189 –0 .001 

40 .663 45 .952 14 .620 40 .182 50 .304 15 .136 –0 .189 

1988–20 0 0 2383 0 .796 1 .001 0 .205 0 .968 1 .206 0 .237 0 .032 

44 .584 42 .256 10 .371 46 .228 39 .782 11 .141 3 .256 

2001–2012 794 0 .932 1 .141 0 .209 0 .887 1 .084 0 .197 –0 .012 

30 .602 36 .926 8 .553 28 .309 36 .203 8 .518 –0 .976 

1976–2012 5044 0 .792 0 .993 0 .200 0 .910 1 .124 0 .213 0 .013 

63 .604 66 .954 17 .930 64 .844 63 .436 18 .142 2 .281 

Panel B: Bivariate regressions 

High-priced group Low-priced group Diff. of diff. 

Sample period nobs β
1 b 

β̄1 b �β1 b β
2 b 

β̄2 b �β2 b �β2 b − �β1 b 

1971–1990 2350 –0 .013 –0 .043 –0 .030 0 .865 1 .085 0 .220 0 .250 

–0 .724 –1 .721 –1 .011 38 .366 41 .082 7 .235 4 .231 

1991–2004 2478 0 .041 0 .003 –0 .038 0 .883 1 .171 0 .289 0 .326 

1 .379 0 .092 –1 .271 28 .630 34 .457 6 .884 4 .729 

1976–1987 1867 –0 .016 –0 .068 –0 .052 0 .863 1 .101 0 .238 0 .290 

–0 .938 –2 .336 –1 .539 34 .684 35 .398 6 .884 4 .311 

1988–20 0 0 2383 0 .001 –0 .035 –0 .036 0 .951 1 .224 0 .273 0 .309 

0 .027 –1 .096 –1 .160 29 .898 37 .527 6 .124 4 .229 

2001–2012 794 0 .356 0 .420 0 .064 0 .568 0 .707 0 .140 0 .075 

6 .585 8 .493 1 .594 14 .599 17 .584 3 .841 1 .036 

1976–2012 5044 0 .050 0 .024 –0 .026 0 .858 1 .097 0 .239 0 .265 

2 .598 1 .085 –1 .271 43 .961 48 .520 9 .363 5 .956 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

additions compared with 0.067 in Barberis, Shleifer, and

Wurgler (2005) based on a sample of 196 index addi-

tions. For 1988–20 0 0, we and Barberis, Shleifer, and Wur-

gler (2005) both find an increase in beta of 0.214 after

stocks are added to the S&P500 index. This increase in the

difference is consistent with the excess comovement hy-

pothesis because the latter period coincides with an in-

crease in indexing. Interestingly, however, this difference

is less than a third as large (0.071 vs. 0.214) for the very

last subperiod, 2001–2012, which was not covered in the

original sample, when indexing gained even more impor-

tance. Notwithstanding this anomaly, on their own, these

results would naturally be interpreted, in the context of

the model in Section 2 , as evidence of excess comovement:
The stock begins to load more heavily on the index return

after it joins the index. Moreover, the economic magnitude

of this effect, particularly in the 1988–20 0 0 subperiod, is

large. Specifically, a coefficient of 0.214, assuming that we

can interpret this average across stocks as the effect at the

group level, implies that more than 20% of the variance of

S&P500 returns is explained by excess comovement, that

is, the nonfundamental group-specific shock. Of course, in-

dividual stock returns are more variable than those of di-

versified portfolios, so the corresponding R -squareds at the

stock level would be significantly smaller. 

Looking at the univariate results with the nonindex

returns as the independent variable shows that this simple

interpretation is not completely accurate. To be consistent
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with excess comovement, the change in the coefficient rel- 

ative to the old group from before to after the stock joins 

the index ( �β1 ) should be negative. That is, the stock 

should load less heavily on nonindex returns when it is in 

the index, a change not examined in prior studies. Instead, 

we find that this change ( �β1 ) is approximately equal 

in magnitude to the coefficient change for the other re- 

gression ( �β2 ) for the 1976–1987 and 2001–2012 periods. 

Consequently, the measure of total excess comovement, 

the difference between these changes ( �β2 –�β1 ), is 

small and statistically insignificant for these two subperi- 

ods. Taken together, these results suggest that it may be 

changes in loadings on the fundamental factor that are 

more important, except for the 1988–20 0 0 subperiod. In 

other words, it is not that stocks are moving more with 

S&P500 returns after they join the index, but simply that 

they are moving more with all stocks. 

The model in Section 2 implies that the bivariate re- 

sults are unreliable in terms of assessing the economic 

magnitude of any excess comovement; however, for com- 

pleteness, we present results from the bivariate regressions 

in Panel B. These results are similar to those reported in 

Barberis, Shleifer, and Wurgler (2005) for matching subpe- 

riods. Their bivariate regressions show an increase in the 

beta with the S&P500 index (new group) and a decrease in 

the beta with non-S&P500 stocks (old group). For example, 

for the full sample, the average beta on the non-S&P500 

group decreases by 0.305, while the beta on the S&P500 

increases by 0.338. 

Interestingly, these results are very different from those 

in the univariate regressions, where both coefficients in- 

crease. The bivariate regression coefficients may say little 

about the magnitude of excess comovement, but this dis- 

crepancy suggests that there are additional shifts in the 

model parameters across the events. Changes in the fun- 

damental loadings of the group returns and in the idiosyn- 

cratic risk of these portfolios will affect the bivariate coef- 

ficients much more than their univariate counterparts, as 

we demonstrate in the next section. 

The results for stock splits are reported in Table 2 , first 

with the Green and Hwang (2009) subperiods. The changes 

in beta relative to the new, low-priced group reported in 

Table 2 , columns 6–8, for matching subperiods are very 

close to those reported by Green and Hwang (2009) in 

their Panel A of Table 2: we report a change of 0.196 for 

1971–1990 with a sample of 2350 splits compared to their 

change in beta of 0.204 with a sample of 2302 splits for 

the same period. For the 1991–2004 period, the samples 

are marginally different: Green and Hwang (2009) report 

an increase of 0.255 in beta with a sample of 2303 splits 

compared to 0.248 with a sample of 2478 splits in this 

article. The second sets of results use the subperiods in 

Table 1 for consistency in the following tables; the results 

are very similar, and there is little variation over time. 

As for index changes, the univariate regression results are 

striking. The coefficient on low-priced stocks increases sig- 

nificantly after the split for all subperiods and is consistent 

with the notion of excess comovement documented in the 

earlier studies. 

We also examine the change in beta relative to the old, 

high-priced group before and after the split. From Panel 
A of Table 2 , columns 3–5, we can see that �β1 is sig- 

nificantly positive for all subperiods, which suggests that 

the beta of the splitting stock increases not only rela- 

tive to the new group (low-priced stocks) but also rela- 

tive to the old group (high-priced stocks). Turning to the 

difference in the change in betas, �β2 –�β1 , we find that 

these numbers are small. For two of the subperiods they 

are negative. Although the differences of 0.03 and 0.01 are 

statistically significant in the 1988–20 0 0 period and the 

full 1976–2012 sample, the economic magnitudes are very 

small and unimportant. Overall, the evidence is that the 

splitting stocks move more with both the old group and 

the new group to approximately the same extent. Thus, 

there is little or no reliable evidence of excess comovement 

following stock splits. The vast majority of the apparent ef- 

fect is attributable to an increase in the fundamental beta 

of these stocks. 

The unreliable bivariate regressions show an increase in 

comovement with the new group. For example, over the 

full period, the beta on high-priced stocks falls by 0.026, 

while the beta on low-priced stocks increases by 0.239. 

However, as with the S&P500 additions sample, this dis- 

crepancy between the univariate and bivariate regression 

results may be an indication of shifts in the properties of 

the group returns in addition to the increase in the funda- 

mental beta of the individual stocks suggested by the uni- 

variate regression results. 

5. Model implications and parameter instability 

The empirical results in Section 4 suggest that the 

fundamental betas of the stocks in the two samples are 

increasing around the event. Moreover, there are more 

complex patterns in both the univariate and bivariate 

coefficients that are potentially consistent with changes in 

the parameters of the model that are not associated with 

excess comovement. Specifically, in one subperiod the S&P 

additions sample shows an increase in the relative beta on 

the S&P500 in the univariate regression, and both samples 

show shifts in the loadings from the group that the stock 

is leaving to the group that it is joining in the bivariate 

regressions. 

In this section, we again turn to the model from 

Section 2 to consider in more detail the effects of three 

forms of parameter instability that can potentially ex- 

plain these results: (1) changes in the fundamental be- 

tas of the stocks, (2) changes in the idiosyncratic risk of 

group returns, and (3) changes in the fundamental betas 

of group returns. The earlier empirical results directly mo- 

tivate the first case. The latter cases are possible expla- 

nations that are investigated empirically in Section 6 us- 

ing the matched-sample approach discussed in Section 5.4 . 

Throughout this analysis, we assume that there is no ex- 

cess comovement at all, that is, 

σ 2 
ui = σ̄ 2 

ui = 0 i = 1 , 2 (13) 

so that all the changes in the coefficients are driven by 

changes in fundamentals. 

While the univariate and bivariate coefficients are 

available in closed form, as shown in Section 2 , it is easier

to get the economic intuition for the effects of parameter 
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Table 3 

Numerical examples. 

We calculate the univariate and bivariate regression coefficients implied by the model in Section 2 for four numerical examples. In all cases, we assume no 

excess comovement, no correlation between idiosyncratic shocks at the group level, the same amount of idiosyncratic risk at the stock level, and the same 

amount of fundamental risk: 

σ 2 
u 1 = σ̄ 2 

u 1 = σ 2 
u 2 = σ̄ 2 

u 2 = 0 cov ( e 1 , e 2 ) = cov ( ̄e 1 , ̄e 2 ) = 0 σ ey = σ̄ey = 1 . 73% σ
f 
= σ̄

f 
= 1% . 

The base case (top row) assumes perfect symmetry. The subsequent examples allow for parameter instability across the event, specifically (1) a change in 

the stock beta, (2) a change in idiosyncratic risk at the group level, and (3) a change in group beta. In each case, the deviations from the base case for both 

the input parameters and the regression coefficients are highlighted in bold. 

Panel A: Inputs 

Case types Fundamental loadings Group idiosyncratic volatility 

b 1 b 1 b 2 b 2 b y b y σ e 1 σ̄e 1 σ e 2 σ̄e 2 

Base case 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .20% 0 .20% 0 .20% 0 .20% 

(1) Change in stock beta 1 .0 1 .0 1 .0 1 .0 1 .0 1 .2 0 .20% 0 .20% 0 .20% 0 .20% 

(2) Change in group i-risk 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 0 .20% 0 .24% 0 .20% 0 .20% 

(3) Change in group beta 1 .0 1 .0 1 .0 0 .8 1 .0 1 .0 0 .20% 0 .20% 0 .20% 0 .20% 

Panel B: Regression coefficients 

Univariate Bivariate 

Case types Coefficient Change Coefficient Change 

β
1 

β̄1 β
2 

β̄2 β̄1 − β
1 

β̄2 − β
2 

β
1 b 

β̄1 b β
2 b 

β̄2 b β̄1 b –β
1 b 

β̄2 b –β
2 b 

Base case 0 .962 0 .962 0 .962 0 .962 0 .0 0 0 0 .0 0 0 0 .490 0 .490 0 .490 0 .490 0 .0 0 0 0 .0 0 0 

(1) Change in stock beta 0 .962 1 .154 0 .962 1 .154 0 .192 0 .192 0 .490 0 .588 0 .490 0 .588 0 .098 0 .098 

(2) Change in group i-risk 0 .962 0 .946 0 .962 0 .962 –0 .016 0 .0 0 0 0 .490 0 .400 0 .490 0 .577 –0 .090 0 .086 

(3) Change in group beta 0 .962 0 .962 0 .962 1 .176 0 .0 0 0 0 .215 0 .490 0 .595 0 .490 0 .476 0 .105 –0 .014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

instability in the context of some simple numerical exam-

ples, where the parameter values are chosen to be repre-

sentative of those in the data. 15 We start with a base case

and examine variants of this example in the subsections

to follow. For the base case, we assume ( 1 ) no parameter

instability, that is, the parameters are the same before and

after the group switch; and ( 2 ) perfect symmetry across

the two groups, that is, the parameters governing the two

group returns are the same. More specifically, we assume 

b i = b̄ i = 1 σ ei = σ̄ei = 0 . 20% i = 1 , 2 

b y = b̄ y = 1 σ ey = σ̄ey = 1 . 73% σ f = σ̄ f = 1% (14)

with volatilities computed on a daily basis. These daily

volatilities imply an annualized volatility of the funda-

mental factor of 15.9% and annualized total (idiosyncratic)

volatilities at the group and stock levels of 16.2% (3.2%)

and 31.7% (27.5%), respectively. The qualitative nature of

the results below is not affected by the precise parame-

terization. For convenience, we further assume that the

idiosyncratic shocks at the group level are uncorrelated 

cov ( e 1 , e 2 ) = cov ( ̄e 1 , ̄e 2 ) = 0 . (15)

This covariance influences the bivariate regression co-

efficients, but this assumption has no qualitative effect on

the key results, that is, the changes in coefficients across
the event. 

15 In our stylized model, there is a single unobservable fundamental fac- 

tor. To calibrate this model we use the value-weighted CRSP portfolio to 

proxy for this factor. The properties of the group returns—that is, their 

betas with respect to this factor and their residual risk—vary across the 

two samples and across the two groups within each sample. So for ease 

of exposition, we use parameter values within the range spanned by the 

data. 

 

 

 

 

 

The resulting univariate and bivariate regression coeffi-

cients are 

β
1 
= β

2 
= β̄1 = β̄2 = 0 . 962 β̄1 − β

1 
= β̄2 − β

2 
= 0 . 0 0 0 

β
1 b 

= β
2 b 

= β̄1 b = β̄2 b = 0 . 490 

β̄1 b − β
1 b 

= β̄2 b − β
2 b 

= 0 . 0 0 0 . (16)

These base case results and the associated parameter

inputs are summarized in the first row of Table 3 , Panels

B and A, respectively, along with the corresponding inputs

and results for the other three numerical examples dis-

cussed in Sections 5.1 –5.3 in the succeeding rows. Due to

the assumptions of parameter stability, and symmetry, the

coefficients are identical across the two groups and across

the pre- and postevent periods. The univariate coefficients

are slightly less than one because idiosyncratic risk at the

group level causes a slight attenuation of the coefficient.

In other words, the group return is proxying for the fun-

damental factor, but it is not a perfect proxy because there

is a small amount of idiosyncratic risk. In the bivariate re-

gressions, the fundamental loading is split equally across

the two groups with similar but somewhat smaller atten-

uation. 

5.1. Changes in stock betas 

First, consider the case where the loading of stock y on

the fundamental factor, b yt , is allowed to vary across the

subperiods, but all the other parameters are kept at their

values in Eqs. (14) and ( 15 ). Specifically, assume 

b y = 1 . 0 b̄ y = 1 . 2 , (17)

that is, the fundamental loading of the stock increases by

20% after the event. 
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The resulting univariate and bivariate regression coeffi- 

cients are 16 

β
1 

= β
2 

= 0 . 962 β̄1 = β̄2 = 1 . 154 

β̄1 − β
1 

= β̄2 − β
2 

= 0 . 192 

β
1 b 

= β
2 b 

= 0 . 490 β̄1 b = β̄2 b = 0 . 588 

β̄1 b − β
1 b 

= β̄2 b − β
2 b 

= 0 . 098 . (18) 

The increase in the fundamental loading of the stock 

from 1.0 to 1.2 shows up almost one for one in the re- 

gression coefficients, with this change being split equally 

between the two bivariate coefficients. 

For the univariate regressions, these results coincide 

closely with those in Table 2 , Panel A for the stock split 

sample. With the exception of the 1988–20 0 0 sample pe- 

riod, they also look like those in Table 1 , Panel A for the 

S&P additions sample. In other words, there is clear evi- 

dence of an increase in the fundamental loadings of the 

stocks across the events. However, the bivariate results 

paint a more complex picture in both cases. It is clearly 

not the case that this increase shows up equally in both 

coefficients in these regressions. Thus, for the bivariate re- 

gression results to be consistent with the absence of excess 

comovement, there must be other shifts in the parameters. 

We turn next to the effect of changes in the idiosyncratic 

risk of the group returns. 

5.2. Changes in group idiosyncratic risk 

Let us return to the base case parameter values, with 

the exception that we now allow the idiosyncratic risk of 

the group 1 returns to vary across the event. Specifically, 

σ e 1 = 0 . 20% σ̄e 1 = 0 . 24% σ e 2 = σ̄e 2 = 0 . 20% , (19) 

that is, the idiosyncratic volatility of group 1 returns in- 

creases by 20%. Note that because the group is well diversi- 

fied and thus idiosyncratic risk is small to begin with, this 

increase moves the total annualized volatility of group 1 

returns from 16.2% to only 16.3%. 

The resulting univariate regression coefficients are 

β
1 

= 0 . 962 β̄1 = 0 . 946 β
2 

= β̄2 = 0 . 962 

β̄1 − β
1 

= −0 . 016 β̄2 − β
2 

= 0 . 0 0 0 (20) 

and the bivariate regression coefficients are 

β
1 b 

= β
2 b 

= 0 . 490 β̄1 b = 0 . 400 β̄2 b = 0 . 577 

β̄1 b − β
1 b 

= −0 . 090 β̄2 b − β
2 b 

= 0 . 086 (21) 

(see the third row of Table 3 , Panels A and B). The group 1 

return is now a slightly poorer proxy for the fundamental 

factor after the event. This effect shows up in the univari- 

ate regression as a small decline of 0.016 in the group 1 

beta. However, the effects on the bivariate regression co- 

efficients are much more dramatic. After the event, the 

regression shifts substantial weight from the group 1 re- 

turn to the group 2 return. Even though the volatility of 
16 For ease of reference, we tabulate these results in the second row of 

Table 3 , Panels A and B. 
the group 1 return has gone up only slightly, this return is 

highly correlated with the group 2 return. So even a small 

deterioration in its ability to proxy for the fundamental 

factor causes a large move in the coefficients. Specifically, 

the coefficient on the group 1 return declines by 0.1, more 

than five times the magnitude of the move in its uni- 

variate counterpart, and in sharp contrast to the result in 

Section 5.1 where, as expected, the bivariate coefficients 

move by about half as much as those in the univariate re- 

gressions. There is also a roughly corresponding increase in 

the coefficient on the group 2 return. Note that we obtain 

these spurious results with bivariate regressions, though 

we explicitly assumed no excess comovement in the setup. 

There are two additional features to note about changes 

in the idiosyncratic volatility of group returns. First, at 

these parameter values the magnitude of the percentage 

change in the bivariate coefficients is approximately equal 

to the percentage change in idiosyncratic volatility—20% 

in the numerical example above. Second, a qualitatively 

and quantitatively similar effect arises if the idiosyncratic 

volatility of group 2 returns declines. The key point is 

that economically small movements in volatility can pro- 

duce shifts in the coefficients in the bivariate regressions 

as documented for both the S&P500 and stock split sam- 

ples. However, these shifts cannot explain the differences 

between the changes in the univariate coefficients in the 

1988–20 0 0 subsample for S&P500 additions. As a potential 

resolution of this anomaly, we next consider shifts in the 

fundamental betas of the group returns. 

5.3. Changes in group betas 

Finally, to see the effects of a change in the fundamen- 

tal beta of the group returns, consider again the base case 

with parameter stability and symmetry across the groups, 

except that the beta of group 2 (the group that the stock 

is joining) changes across the event. Specifically, 

b 1 = b̄ 1 = 1 . 0 b 2 = 1 . 0 b̄ 2 = 0 . 8 , (22)

that is, the fundamental loading of the group 2 returns de- 

clines by 20% across the event. 

The resulting univariate and bivariate regression coeffi- 

cients, as also reported in the final row of Table 3 , Panels 

A and B, are 

β
1 

= β̄1 = 0 . 962 β
2 

= 0 . 962 β̄2 = 1 . 176 

β̄1 − β
1 

= 0 β̄2 − β
2 

= 0 . 215 

β
1 b 

= β
2 b 

= 0 . 490 β̄1 b = 0 . 595 β̄2 b = 0 . 476 

β̄1 b − β
1 b 

= 0 . 105 β̄2 b − β
2 b 

= −0 . 014 . (23) 

Given these parameter values, the increase in the uni- 

variate coefficient on group 2 (0.215) is approximately 

equal to the decrease in the fundamental beta of the group 

2 returns (0.200). The primary effect is that the group 2 

return is now less sensitive to the fundamental factor after 

the event, and therefore the loading on this return must 

increase in order to explain the unchanged fundamental 

loading of the stock. 

In the bivariate regression, this increase shows up as 

a smaller 0.105 increase in the coefficient on the group 1 
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Table 4 

Past return performance of sample stocks. 

For each stock in the sample (see Tables 1 and 2 

for the sample description), we record the momentum 

decile portfolio in which it would fall based on its re- 

turns over the prior 12 months. The table reports the 

percentage of stocks in the S&P500 additions and stock 

splits samples that fall in each decile and the mean and 

median return on these stocks over the prior year. 

Frequency (%) 

S&P500 Stock 

Decile additions splits 

Losers 2 .94 0 .28 

2 3 .68 0 .89 

3 5 .00 1 .61 

4 4 .12 2 .92 

5 12 .06 4 .78 

6 9 .12 7 .66 

7 11 .91 10 .09 

8 14 .12 14 .75 

9 16 .62 21 .36 

Winners 20 .44 35 .66 

Mean return 41 .6% 109 .1% 

Median return 25 .0% 63 .9% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17 These tests require a long trading period potentially leading to a sur- 

vivorship bias. The results, however, are virtually unaffected even when 

shorter periods are used. 
return with little change in the coefficient on the group

2 return. As in the univariate regression, the loadings are

adjusting so that the fundamental loading of the stock

is almost fully captured. However, after the event the

regression favors the group 1 return as a proxy for the

fundamental factor, because with a decreased beta but

unchanged idiosyncratic volatility, the group 2 return has

now become a relatively poorer proxy. 

5.4. A matched-sample approach 

Sections 5.1 –5.3 illustrate that parameter instability can

generate effects on the univariate and bivariate regression

coefficients similar to those seen in the data, even in our

stylized model and, more importantly, in the complete ab-

sence of excess comovement. Of course, excess comove-

ment can also generate movements in the coefficients.

The question is whether we can distinguish between these

competing explanations. We can potentially identify shifts

in the parameters in the data that are consistent with the

logic above, but it is important to remember that our nu-

merical results are in the context of a stylized model. The

real data-generating processes are undoubtedly more com-

plex. However, there is a different approach that will allow

us to determine if the empirical results are driven by ex-

cess comovement. In particular, shifts in the properties of

the group returns will show up in the regression results

regardless of the identity of the stocks whose returns are

used as the dependent variables. If we can find a sample of

stocks that match the key features of the changes in prop-

erties of the stock returns in the two samples, that is, the

movements in their fundamental betas, then all the other

effects associated with the group returns will show up in

regressions using this matched sample. We pursue this ex-

ercise in Section 6 . 

6. Comovement revisited 

It would be a remarkable coincidence if selecting sam-

ples based on S&P500 index additions and stock splits was

independently choosing stocks whose betas increase after

the event. However, as it turns out, these two samples

have something in common. The stocks in both samples

have abnormally good performance before the event. This

phenomenon is well known for stock splits—only compa-

nies whose stock price goes up split their stocks—but it

is also intuitive for index additions—S&P is biased toward

larger, better-performing stocks for inclusion in their flag-

ship index, holding other criteria constant. Moreover, the

goal of making the index representative of the market in

terms of industry balance also leads to the inclusion of in-

dustries and firms within these industries that have per-

formed relatively well. 

To examine the extent of these effects, for each stock

in the two samples, we record the momentum decile in

which it falls. In other words, when stocks are ranked into

ten portfolios based on returns over the past year (i.e.,

from losers to winners), how many of our sample stocks

are in each portfolio? These results, along with the mean

and median returns of the sample stocks are reported in

Table 4 . If the decision to include a stock in the S&P500
or to split were independent of past returns, we would ex-

pect approximately 10% of the sample to fall in each decile.

In contrast, both samples are tilted heavily toward win-

ner stocks, with the effect being more pronounced for the

split sample. For example, 57% of the split sample falls into

the top two deciles, while the corresponding number for

S&P500 additions is 37%. Average returns for these sam-

ples are 109.1% and 41.6%, although the medians are lower,

suggesting a right-skewed distribution. 

Given this evidence, the questions are (1) whether se-

lecting on positive past performance can explain the beta

increases that are consistent with the initial empirical re-

sults in Section 4 , and (2) whether controlling for this ef-

fect eliminates the appearance of excess comovement. We

look at the former question in Section 6.1 and the latter in

Section 6.2 . 

6.1. Momentum and beta 

In examining changes in beta following periods of good

performance, we follow the momentum methodology de-

scribed in Section 3 . While our focus is on winners, we re-

port the winner and loser stock betas beginning two years

before the holding period and continuing up to two years

after the beginning of the holding period. 17 The results, in

Table 5 and Fig. 1 , show that betas of winner stocks in-

crease dramatically during the formation period and con-

tinue to increase during the holding period. They stabilize

thereafter for a few months and begin to decline. Specif-

ically, we find that betas of winner stocks increase from

0.976 to 1.143 (a statistically significant change of 0.167)

from Year –1 to Year 0, and from 0.964 in Year –2 to 1.143
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Table 5 

Beta changes and momentum. 

At the end of each June from 1976 through 2011, stocks with a price of at least $10 that do not fall into the bottom size decile of NYSE 

stocks are assigned into ten momentum deciles based on their cumulative returns over the preceding 252 days. We estimate betas for each 

stock based on a rolling window of 252 days from two years before formation of momentum portfolios through two years after formation, 

and compare beta changes for both the top and bottom two momentum portfolios. Thus, betas for years –2 and –1 are estimated over rolling 

windows ending 504 and 252 trading days before portfolio formation, respectively. Postmomentum portfolio formation years allow for a 21- 

trading day skip, and are estimated over 252 days ending 273 and 525 trading days after portfolio formation. In each cell, the first number is 

the time series average of the mean, and the second number is the corresponding t -statistic. 

Momentum Year Year Year Year Year Year 0 – Year 0 – Year 1 – Year 2 –

decile –2 –1 0 1 2 Year –2 Year –1 Year 0 Year 0 

10 (Winners) 0 .964 0 .976 1 .143 1 .271 1 .166 0 .179 0 .167 0 .128 0 .023 

21 .865 20 .588 21 .313 21 .163 25 .997 4 .139 4 .891 3 .217 0 .553 

9 0 .918 0 .916 0 .981 1 .038 0 .994 0 .063 0 .065 0 .057 0 .013 

21 .974 21 .109 21 .917 23 .529 27 .510 2 .161 2 .693 2 .194 0 .448 

Middle 6 deciles 0 .818 0 .829 0 .832 0 .834 0 .841 0 .014 0 .003 0 .002 0 .009 

29 .606 28 .510 27 .432 26 .003 25 .132 0 .642 0 .221 0 .150 0 .438 

2 0 .903 0 .925 0 .917 0 .876 0 .888 0 .014 –0 .007 –0 .042 –0 .029 

28 .188 28 .429 23 .377 20 .214 20 .436 0 .579 –0 .373 –2 .546 –1 .251 

1 (Losers) 1 .047 1 .094 1 .092 1 .031 1 .015 0 .045 –0 .003 –0 .061 –0 .077 

31 .351 32 .901 21 .759 20 .707 21 .423 1 .229 –0 .091 –1 .977 –2 .219 

Fig. 1. Beta changes and momentum. We estimate market betas of winner and loser stocks, defined as the top and bottom deciles of stocks sorted on past 

12-month returns, skipping the most recent month, as in Jegadeesh and Titman (2001) , for the sample period 1976–2011. These betas are estimated over 

rolling windows of 252 days (1 year). 
in Year 0, a statistically and economically significant in- 

crease of 0.179. The betas continue to increase further dur- 

ing the holding period to 1.271 (a statistically significant 

change of 0.128) from Year 0 to Year + 1 before declining to 

1.166 in Year + 2. 18 On the other hand, the middle deciles 
18 While the issue of the causes of this pattern in betas is beyond the 

scope of this article, the models in Johnson (2002) and Sagi and Seasholes 

(2007) provide a theoretical basis for momentum in the context of time- 

varying risk. 
do not experience statistically or economically significant 

changes in beta. 

This pattern of consistently increasing betas for stocks 

with high past returns has the potential to explain the re- 

sults in Section 4 . The betas of the stocks in the sample 

increase around the event in question, and therefore they 

comove more with all stocks after the event, both stocks 

in the group they are joining and stocks in the group they 

are leaving. 
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6.2. Comovement with momentum-matched firms (and 

Dimson’s betas) 

For the analysis in this subsection, we make two adjust-

ments to better assess the magnitude of excess comove-

ment, if any, present in the data. First, because we are us-

ing daily data, nonsynchronous trading may limit our abil-

ity to obtain accurate regression coefficients. To the extent

that stocks do not all trade simultaneously at the end of

each day, the observed return on a stock will be poten-

tially correlated with leads and lags of the returns on a

given portfolio ( Denis and Kadlec, 1994 ). The correct ad-

justment for this effect in order to uncover the true re-

gression coefficient is to sum the coefficients in a regres-

sion, which includes these leads and lags ( Dimson, 1979 ). 19

Nonsynchronous trading is likely more important for the

stock splits sample since these stocks are smaller and less

liquid on average than those added to the S&P500. How-

ever, this adjustment is likely to be more important for

the S&P500 additions sample when we examine changes

in coefficients pre- and postevent. The intuition is that it

is changes in nonsynchronous trading across the two pe-

riods that matter for examining differences in coefficients,

and while there is little evidence of major liquidity effects

associated with stock splits, that is not true for index addi-

tions. Throughout the analysis in this section, we use two

leads and lags for all portfolio returns used as independent

variables. 20 

Second, following up on the Section 6.1 results, where

we find evidence of increasing betas in momentum stocks,

and the matched-sample logic of Section 5.4 , we also

compare comovement of sample stocks with a matched

sample that exhibits similar momentum characteristics.

Barberis, Shleifer, and Wurgler (2005) use a sample of

firms matched by size and industry, but do not control for

momentum, which appears to be the critical factor due to

the beta patterns associated with winner stocks. 21 Conse-

quently, for each addition, we select a matched firm from

the same size decile that is not a member of the S&P500

index and is closest in terms of lagged 252-day return to

the added firm at the time of inclusion. 22 Due to the ex-

ceptional performance of some firms in the sample, a per-

fect match is not possible. While the average and median

returns of the matched stocks are only slightly lower than

those of the original sample, for stocks in the top 10% of

the sample, the matched stocks have returns that are sig-

nificantly lower, albeit still high, in some cases. 23 

Like Barberis, Shleifer, and Wurgler (2005), Green and

Hwang (2009) construct a sample matched by size and in-

dustry without controlling for momentum. The matched
19 Vijh (1994), Barberis, Shleifer, and Wurgler (2005) , and Kasch and 

Sarkar (2014) use similar Dimson adjustments in some of their analyses. 
20 Barberis, Shleifer, and Wurgler (2005) use five leads and lags in their 

analysis, but they state that any effects are “barely detectable beyond just 

a one-day lag in the univariate regressions and beyond a two-day lag in 

the bivariate regressions” (p. 310). 
21 Kasch and Sarkar (2014) also match on changes in earnings, but our 

results indicate that this further control is unnecessary in our context. 
22 In results not presented here, requiring the matched firm to be from 

the same industry as the sample firm does not change the results. 
23 In the interest of brevity, these results are not tabulated in the article. 
sample that we use in this article for stock splits con-

trols for both size and momentum. For each stock split, we

first select a group of firms from the high-priced portfo-

lio that fall in the same size decile. Thereafter, we choose

firms that are closest to the splitting firm in terms of mo-

mentum. The matched firm is the one that comes clos-

est in price and momentum to the sample firm within

the same size decile. Given the more challenging match-

ing criteria and the more extreme positive returns of the

stock split sample, it is not surprising that the match is

somewhat worse than for the S&P500 additions sample. In

this case, even the median return of the matched sample

is more than 7% below that of the original sample, with

much larger differences for stocks with the most extreme

returns. In spite of this issue, it is still worth examining

the results, realizing that if the magnitudes of beta changes

are correlated with the magnitudes of returns, particularly

for very high returns, the matched sample will not ex-

hibit quite the same shifts in fundamentals as the original

sample. 

Tables 6 and 7 present the results for the S&P500 in-

dex addition and stock split samples, respectively. In both

cases, Panel A provides the univariate regression results,

while those for the bivariate regression are reported in

Panel B. Within each panel, we first present the results for

the sample of event stocks. These results are comparable

to those in Tables 1 and 2 , except that we now use the

Dimson adjustment to estimate the coefficients. We then

provide the estimation results for the matched sample. Fi-

nally, we show the difference between the original and

momentum-matched samples. 

For the S&P500 index additions, the Dimson adjustment

alone generally accounts for more than 50% of the effect

that appears in the original analysis. For example, �β2

in the most significant subperiod (1988–20 0 0) drops from

0.214 to 0.078. Not surprisingly, this large change is pri-

marily due to an increase in the estimated beta prior to

the addition of the stock to the index. It is prior to being

included in the index that the stock is likely to be less liq-

uid, and therefore the Dimson adjustment is also likely to

be more important. 24 

Looking at the differences between the coefficient

changes across regressions, �β2 –�β1 , only in this same

subperiod is the coefficient statistically positive with a

value of 0.129 and a t -statistic of 2.55. The magnitude of

the decline in this difference from 0.199 in Table 1 , a drop

of approximately one-third, is consistent with the effect of

the Dimson adjustment reported in Barberis, Shleifer, and

Wurgler (2005) . While they attribute this fraction of the

effect to slow information diffusion, an explanation based
24 The effect of the Dimson adjustment is larger than that documented 

in Barberis, Shleifer, and Wurgler (2005) in large part because they use 

five leads and lags rather than the two leads and lags used in this analy- 

sis. While the coefficients at lag 3 are small and statistically insignificant, 

there are sporadically large coefficient estimates at longer leads and lags 

(see Barberis, Shleifer, and Wurgler, 2005, Table 5 ). Given this evidence, 

two leads and lags provides a good tradeoff between misspecification, i.e., 

omitting longer leads and lags that are truly important, and estimation er- 

ror, i.e., estimating coefficients for leads and lags that are truly zero. This 

choice is consistent with the arguments made in Barberis, Shleifer, and 

Wurgler (2005) , as noted in footnote 20. 
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Table 6 

S&P additions with matched-sample and Dimson adjustments. 

We estimate the univariate and bivariate Dimson (1979) regressions for a sample of stocks that are added to the S&P500 index from 1976 through 

2012 and for a portfolio of matched firms. The pre-event estimation period covers a one-year window ending at the end of the month preceding 

announcement, while the postevent period covers the one-year window starting the month after the effective date of index change. x 1 t is return to 

non-S&P500 index at time t , while x 2 t is return to the S&P500 index at time t . The match firm for each addition is identified as the one with closest 

momentum from the same size decile as the addition firms. The Dimson beta is defined as a simple sum of the lag, concurrent, and lead coefficients 

from the following regressions with two leads and lags. In each cell, the first number is the mean, and the second number is the corresponding 

t -statistic, where standard errors are clustered by month. 

y t = α + 

2 ∑ 

s = −2 

βs 
1 x 1 ,t+ s + ε t 

y t = α + 

2 ∑ 

s = −2 

βs 
2 x 2 ,t+ s + ε t 

y t = α + 

2 ∑ 

s = −2 

βs 
1 x 1 ,t+ s + 

2 ∑ 

s = −2 

βs 
2 x 2 ,t+ s + ε t 

. 

Panel A: Univariate regressions 

Non-S&P500 group S&P500 Diff. of diff. 

Sample period nobs β
1 

β̄1 �β1 β
2 

β̄2 �β2 �β2 − �β1 

1976–1987 187 1 .190 1 .272 0 .081 1 .156 1 .190 0 .033 –0 .048 

28 .734 28 .294 2 .017 26 .699 29 .071 0 .820 –2 .096 

1988–20 0 0 245 1 .193 1 .142 –0 .051 1 .161 1 .239 0 .078 0 .129 

Sample 27 .716 23 .419 –0 .919 29 .551 25 .360 1 .527 2 .549 

2001–2012 203 1 .007 1 .020 0 .013 1 .187 1 .168 –0 .020 –0 .033 

26 .383 25 .779 0 .348 29 .117 27 .880 –0 .483 –1 .187 

1976–2012 635 1 .133 1 .141 0 .008 1 .168 1 .202 0 .034 0 .025 

46 .873 42 .120 0 .312 49 .382 45 .861 1 .260 1 .093 

1976–1987 187 1 .060 1 .066 0 .006 0 .985 0 .989 0 .004 –0 .002 

27 .537 26 .633 0 .143 27 .133 23 .089 0 .103 –0 .085 

1988–20 0 0 245 1 .103 1 .071 –0 .031 1 .087 1 .167 0 .080 0 .111 

Match 23 .047 19 .611 –0 .493 25 .860 17 .404 1 .156 2 .232 

2001–2012 203 0 .976 0 .994 0 .017 1 .138 1 .132 –0 .006 –0 .023 

21 .149 24 .104 0 .437 22 .733 23 .749 –0 .126 –0 .877 

1976–2012 635 1 .050 1 .045 –0 .005 1 .073 1 .103 0 .030 0 .035 

40 .310 38 .185 –0 .160 42 .135 33 .184 0 .916 1 .552 

1976–1987 187 0 .130 0 .206 0 .076 0 .171 0 .201 0 .030 –0 .046 

2 .721 3 .783 1 .321 3 .965 3 .752 0 .550 –1 .998 

1988–20 0 0 245 0 .090 0 .070 –0 .020 0 .074 0 .072 –0 .002 0 .018 

Sample minus match 1 .821 1 .363 –0 .392 1 .481 1 .445 –0 .029 0 .601 

2001–2012 203 0 .031 0 .026 –0 .004 0 .050 0 .036 –0 .014 –0 .009 

0 .537 0 .506 –0 .094 0 .806 0 .660 –0 .247 –0 .458 

1976–2012 635 0 .083 0 .096 0 .013 0 .095 0 .099 0 .004 –0 .009 

2 .764 3 .097 0 .447 3 .104 3 .179 0 .121 –0 .631 

Panel B: Bivariate regressions 

Non-S&P500 group S&P500 Diff. of diff. 

Sample period nobs β
1 b 

β̄1 b �β1 b β
2 b 

β̄2 b �β2 b �β2 b − �β1 b 

1976–1987 187 0 .756 0 .809 0 .053 0 .462 0 .452 –0 .010 –0 .063 

10 .061 10 .040 0 .489 7 .552 5 .819 –0 .100 –0 .307 

1988–20 0 0 245 0 .803 0 .693 –0 .110 0 .438 0 .562 0 .123 0 .233 

Sample 14 .017 9 .300 –1 .271 8 .225 8 .152 1 .579 1 .473 

2001–2012 203 0 .901 0 .791 –0 .109 0 .148 0 .270 0 .123 0 .232 

10 .262 7 .895 –1 .220 1 .765 2 .817 1 .219 1 .241 

1976–2012 635 0 .820 0 .759 –0 .062 0 .352 0 .436 0 .084 0 .146 

19 .467 15 .474 –1 .145 8 .889 9 .269 1 .583 1 .399 

1976–1987 187 0 .844 0 .803 –0 .041 0 .221 0 .265 0 .044 0 .085 

12 .157 12 .962 –0 .491 3 .462 4 .522 0 .558 0 .542 

1988–20 0 0 245 0 .800 0 .785 –0 .015 0 .368 0 .406 0 .038 0 .053 

Match 12 .115 10 .199 –0 .177 6 .708 5 .661 0 .452 0 .332 

( continued on next page ) 
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Table 6 ( continued ) 

Panel B: Bivariate regressions 

Non-S&P500 group S&P500 Diff. of diff. 

2001–2012 203 0 .893 0 .808 –0 .086 0 .107 0 .209 0 .102 0 .188 

8 .893 7 .155 –0 .819 1 .087 1 .918 0 .905 0 .881 

1976–2012 635 0 .843 0 .798 –0 .045 0 .241 0 .301 0 .060 0 .105 

18 .253 15 .937 –0 .856 5 .467 6 .242 1 .122 1 .027 

1976–1987 187 –0 .087 0 .006 0 .093 0 .241 0 .187 –0 .054 –0 .147 

–0 .816 0 .059 0 .648 2 .806 1 .886 –0 .415 –0 .550 

1988–20 0 0 245 0 .003 –0 .092 –0 .095 0 .070 0 .156 0 .086 0 .181 

Sample minus match 0 .040 –1 .035 –1 .019 0 .942 1 .955 0 .930 1 .014 

2001–2012 203 0 .008 –0 .016 –0 .024 0 .041 0 .061 0 .020 0 .044 

0 .067 –0 .111 –0 .188 0 .392 0 .432 0 .147 0 .170 

1976–2012 635 –0 .022 –0 .039 –0 .017 0 .111 0 .135 0 .024 0 .041 

–0 .399 –0 .598 –0 .244 2 .179 2 .178 0 .347 0 .304 

Table 7 

Stock splits with matched-sample and Dimson adjustments. 

We estimate the univariate and bivariate Dimson (1979) regressions for a sample of two-for-one stock splits from 1976 through 2012. Our sample 

includes all ordinary common stock two-for-one splits with a presplit price of $10 or greater during our sample period. x 1 t and x 2 t are return to a 

portfolio of high-priced stocks whose price belongs to [3p/4, 5p/4] and low-priced stocks with prices within [1p/4, 3p/4] at time t , where p is the 

presplit price before effective date of split. The pre-event (postevent) window is defined as the one year ending (beginning) one month before (after) 

the split date. The Dimson beta is defined as a simple sum of the lag, concurrent, and lead coefficients from the following regressions with two leads 

and lags. In each cell, the first number is the mean, and the second number is the corresponding t -statistic, where standard errors are clustered by 

month. 

y t = α + 

2 ∑ 

s = −2 

βs 
1 x 1 ,t+ s + ε t 

y t = α + 

2 ∑ 

s = −2 

βs 
2 x 2 ,t+ s + ε t 

y t = α + 

2 ∑ 

s = −2 

βs 
1 x 1 ,t+ s + 

2 ∑ 

s = −2 

βs 
2 x 2 ,t+ s + ε t 

. 

Panel A: Univariate regressions 

High-priced group Low-priced group Diff. of diff. 

Sample period nobs β
1 

β̄1 �β1 β
2 

β̄2 �β2 �β2 − �β1 

1976–1987 1606 0 .924 1 .120 0 .197 0 .981 1 .154 0 .172 –0 .024 

55 .306 42 .904 8 .486 55 .824 51 .170 8 .603 –2 .271 

1988–20 0 0 2097 0 .963 1 .132 0 .168 1 .056 1 .267 0 .211 0 .043 

Sample 42 .614 41 .875 5 .572 45 .824 40 .457 7 .029 2 .834 

2001–2012 727 1 .042 1 .222 0 .180 0 .961 1 .135 0 .174 –0 .006 

29 .491 37 .391 5 .181 26 .458 34 .593 5 .621 –0 .411 

1976–2012 4430 0 .962 1 .142 0 .181 1 .014 1 .204 0 .191 0 .010 

69 .502 67 .815 10 .295 72 .336 66 .694 11 .367 1 .172 

1976–1987 1606 0 .858 0 .957 0 .099 0 .901 0 .981 0 .080 –0 .019 

48 .739 42 .268 5 .078 50 .803 48 .675 4 .855 –2 .349 

1988–20 0 0 2097 0 .847 0 .943 0 .095 0 .926 1 .046 0 .120 0 .025 

Match 46 .451 40 .139 3 .492 49 .136 33 .341 4 .236 2 .112 

2001–2012 727 0 .991 1 .116 0 .125 0 .917 1 .029 0 .112 –0 .013 

30 .774 42 .113 4 .538 29 .015 37 .387 4 .852 –1 .031 

1976–2012 4430 0 .875 0 .976 0 .102 0 .915 1 .020 0 .104 0 .003 

70 .200 66 .242 6 .620 75 .350 59 .093 6 .856 0 .375 

1976–1987 1606 0 .066 0 .163 0 .098 0 .080 0 .173 0 .093 –0 .005 

4 .459 8 .755 4 .774 5 .694 9 .602 4 .620 –0 .688 

1988–20 0 0 2097 0 .116 0 .189 0 .073 0 .131 0 .222 0 .091 0 .018 

Sample minus match 6 .757 9 .134 3 .493 7 .490 10 .703 4 .638 1 .619 

2001–2012 727 0 .050 0 .105 0 .055 0 .045 0 .106 0 .062 0 .007 

1 .823 3 .372 1 .790 1 .727 3 .437 2 .099 0 .582 

1976–2012 4430 0 .087 0 .166 0 .079 0 .098 0 .185 0 .087 0 .008 

8 .081 12 .819 5 .911 9 .204 14 .350 6 .826 1 .249 

( continued on next page ) 
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Table 7 ( continued ) 

Panel B: Bivariate regressions 

High-priced group Low-priced group Diff. of diff. 

Sample period nobs β
1 b 

β̄1 b �β1 b β
2 b 

β̄2 b �β2 b �β2 b − �β1 b 

1976–1987 1606 0 .262 0 .152 –0 .109 0 .722 0 .993 0 .272 0 .381 

7 .176 3 .754 –1 .915 20 .178 25 .398 4 .645 3 .349 

1988–20 0 0 2097 0 .177 0 .008 –0 .170 0 .866 1 .238 0 .372 0 .542 

Sample 4 .073 0 .161 –3 .172 18 .434 27 .571 5 .726 4 .741 

2001–2012 727 0 .471 0 .464 –0 .007 0 .554 0 .731 0 .176 0 .183 

7 .325 8 .411 –0 .101 11 .453 13 .473 3 .055 1 .513 

1976–2012 4430 0 .256 0 .135 –0 .121 0 .762 1 .066 0 .304 0 .425 

9 .363 4 .514 –3 .492 27 .557 36 .602 7 .847 5 .973 

1976–1987 1606 0 .317 0 .172 –0 .144 0 .588 0 .810 0 .221 0 .366 

9 .210 4 .637 –2 .832 17 .657 20 .767 4 .132 3 .549 

1988–20 0 0 2097 0 .226 0 .109 –0 .117 0 .698 0 .941 0 .243 0 .360 

Match 6 .847 3 .114 –2 .725 21 .726 24 .571 4 .906 4 .129 

2001–2012 727 0 .455 0 .482 0 .027 0 .518 0 .616 0 .098 0 .072 

8 .797 9 .691 0 .432 12 .138 14 .502 1 .893 0 .651 

1976–2012 4430 0 .296 0 .193 –0 .103 0 .628 0 .840 0 .211 0 .315 

13 .273 7 .960 –3 .482 29 .628 33 .409 6 .631 5 .314 

1976–1987 1606 –0 .055 –0 .020 0 .035 0 .133 0 .184 0 .050 0 .015 

–1 .279 –0 .508 0 .603 3 .086 4 .745 0 .841 0 .134 

1988–20 0 0 2097 –0 .049 –0 .101 –0 .053 0 .168 0 .298 0 .130 0 .182 

Sample minus match –1 .240 –2 .548 –0 .944 4 .067 7 .071 2 .347 1 .672 

2001–2012 727 0 .015 –0 .018 –0 .033 0 .037 0 .115 0 .078 0 .112 

0 .231 –0 .268 –0 .470 0 .604 1 .745 1 .116 0 .813 

1976–2012 4430 –0 .040 –0 .058 –0 .018 0 .134 0 .226 0 .092 0 .110 

–1 .517 –2 .228 –0 .496 4 .955 8 .443 2 .575 1 .568 
on microstructure effects such as nonsynchronous trading 

is also plausible. 25 Regardless, it is the remaining two- 

thirds that we seek to explain with the matched-sample 

approach. For the matched sample of firms in 1988–20 0 0, 

we get a value of 0.111 with a t -statistic of 2.23, which 

is not statistically significantly different from 0.129 for the 

original firms. Across all subperiods, there is no single dif- 

ference above 0.020 between the original and matched 

samples. To put it succinctly, there is absolutely no evi- 

dence of any excess comovement once we control for the 

momentum effect. 

That said, one might legitimately wonder why, in 

the 1988–20 0 0 subperiod, both the sample and matched 

stocks exhibit univariate regression coefficients that vary 

so much across S&P500 and non-S&P500 stocks. The an- 

swer, as discussed in Section 5 , is a shift in fundamental 

parameters over the event period. First, it is important to 

note that the anomalous result above is confined to 1999 

and 20 0 0. For the other years in the subperiod, there are 

no statistically significant effects. However, in these two 

years, the effect reported in Panel A of Table 6 is much 

larger. The explanation is a shift in the fundamental be- 

tas of the two groups of stocks, S&P500 stocks and non- 
25 There is an extensive literature debating the slow information dif- 

fusion versus nonsynchronous trading/microstructure-based explanations 

for these short-lived phenomena (see, e.g., Lo and MacKinlay, 1990; 

Boudoukh, Richardson, and Whitelaw, 1994; Kadlec and Patterson, 1999 ). 

In spite of the large number of papers on this topic, in many contexts it 

is fair to say that the question is still open. 
S&P500 stocks, across the event dates. The betas of these 

portfolios with respect to the value-weighted market be- 

have very differently. In results not tabulated here, we find 

that the average beta of the S&P500 portfolio decreases by 

0.06 while that of the non-S&P500 portfolio increases by 

0.16. Depending on the other parameters, this effect alone 

would suggest an increase in the beta of a stock on the 

S&P500 of more than 0.20 relative to that on a portfolio 

of non-S&P500 stocks as shown in Section 5.3 . This rela- 

tive increase shows up primarily as an increase in beta on 

the S&P500 because the fundamental betas of the stocks 

in both the S&P500 addition and matched samples are also 

increasing. We speculate that the movements in the funda- 

mental betas of the group portfolios are due to the tech- 

nology boom at that time. As high-risk technology stocks 

become more important in the overall market, the S&P500, 

which is relatively light in these stocks, exhibits a declin- 

ing beta throughout this period. Since the technology sec- 

tor is not likely to be underrepresented in the set of stocks 

added to the index in this period, a similar pattern does 

not show up in these stocks. Regardless of the precise ex- 

planation, the fact that the effect shows up in the matched 

sample is clear evidence that it is a result of parameter in- 

stability at the group level. 

For the bivariate regressions, the same basic results 

of no excess comovement hold. There are no statisti- 

cally significant differences between the beta changes 

associated with the S&P addition sample and the matched 

sample. Moreover, while some of the individual beta 

changes have magnitudes of 0.1 or slightly higher in both 
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26 Results are not reported in the interest of brevity. 
27 As for index additions, we extend the sample to 2012. The sample 

sizes for overlapping periods are similar to those in Barberis, Shleifer, and 

Wurgler (2005) . 
samples, none of these individual differences is statistically

significant. Again, the fact that similar patterns show up in

the matched sample is an indication that it is the proper-

ties of the group returns, not the stocks, that is changing

across the event. In this case, the shifts in loadings across

the two groups are consistent with changes in the relative

fractions of idiosyncratic risk as illustrated in Section 5.2 . 

For stock splits, we have already established that even

the original sample exhibits little or no evidence of excess

comovement when comparing the univariate regression re-

sults across low-priced stocks (the new group) and high-

priced stocks (the old group). Nevertheless, it is still worth-

while looking briefly at the results with Dimson betas for

a momentum-matched sample. Even though we estimate

Dimson betas for uniformity, we do not anticipate Dim-

son betas making a significant difference because nonsyn-

chronous trading is unlikely to be different for the high-

priced and low-priced groups. On the other hand, almost

all splitting stocks are likely to be momentum stocks, so a

properly matched sample should also exhibit similarly high

changes in betas. 

The basic results in Table 7 are affected little by the

Dimson adjustment—comovement with both portfolios in-

creases after the split by similar amounts. Not surprisingly,

the same phenomenon shows up in the matched sample,

although it is smaller than in the original sample. We at-

tribute these differences to our inability to match some of

the high returns on the splitting stocks in our matched

sample. When taking differences across the samples, the

values are economically very small and predominantly sta-

tistically insignificant. 

Results are similar for the bivariate regressions, and ex-

cess comovement is not evident in any subperiod except

during 1988–20 0 0. We attribute this result to the imper-

fect match. Specifically, due to the extreme positive returns

exhibited by technology stocks in this subperiod, the dif-

ferences between the returns on the matched firms and

those in the stock split sample are significantly larger than

in the remainder of the sample period. Given the appar-

ent empirical relationship between past returns and beta

increases, it is not surprising that these matched firms ex-

hibit slightly smaller beta changes than those in the stock

split sample. Nevertheless, the bivariate regression results

are still puzzling. As an example, consider the results for

both samples (i.e., the stock split sample and the matched

sample) over the full period. In both cases, the coefficient

on high-priced stocks decreases while that on low-priced

stocks increases, and the changes are statistically signifi-

cant in all cases. Clearly, this result is not due to excess

comovement because it shows up in the matched sam-

ple, and there is no change in group membership for these

stocks. However, as noted in Section 5.2 , small changes in

the characteristics of the group portfolios can have large

effects on these bivariate coefficients. In particular, in-

creases in the idiosyncratic volatility of the returns on the

high-priced group relative to that of the low-priced group

are consistent with this phenomenon. A relative increase

in idiosyncratic risk makes the group return a poorer proxy

for the common (fundamental) factor, thus decreasing the

weight that the regression puts on this return and increas-

ing the weight on the other group return. 
These results highlight the dangers of interpreting

the coefficients from bivariate regressions, but they only

strengthen our overall conclusion that there is no mean-

ingful evidence of excess comovement. 

7. Robustness checks 

We reconfirm the baseline results on comovement by

repeating our analysis with weekly data and for index

deletions. 

7.1. Weekly data 

Although Barberis, Shleifer, and Wurgler (2005) and

Green and Hwang (2009) present evidence of excess co-

movement using daily, weekly, and monthly data, their re-

sults are strongest with daily data. Accordingly, the main

results in the article are based on daily data. Here, we

test the results with weekly data for S&P500 additions and

stock splits. Essentially, using weekly data has an effect

similar to adding two leads and two lags to the beta es-

timates, as we do above. Not surprisingly, the results are

much weaker with weekly data than with daily data. Once

a matched sample is used to control for changes in fun-

damental factor loadings, there is no evidence of residual

excess comovement in univariate regressions for S&P500

additions or for stock splits. In addition, there is no evi-

dence of excess comovement for stock splits in the bivari-

ate regressions. 26 However, there is weak evidence of ex-

cess comovement in bivariate regressions for the S&P500

additions sample, which is not surprising given the prior

discussion of instability of coefficients in bivariate regres-

sions. 

7.2. Index deletions 

Our baseline analysis has considered only S&P500 in-

dex additions because they are more interesting, impor-

tant, and the focus of prior research. Because stocks are

both added to and deleted from the S&P500 index, usually

at the same time, it is informative to also study index dele-

tions for a reverse comovement effect. Unlike index addi-

tions, which are always voluntary and at the discretion of

the index committee of Standard & Poor’s, index deletions

may be voluntary or involuntary. Index deletions are invol-

untary when a firm ceases to exist (mergers and bankrupt-

cies) or when a firm ceases to meet primary criteria estab-

lished by Standard & Poor’s (reincorporation in a foreign

country). Voluntary index deletions may occur because a

firm is no longer representative of the U.S. economy, the

industry is less representative of the economy, or the firm

has become too small in size. 

We repeat the analysis of S&P500 index additions with

a sample of primarily voluntary deletions. 27 Due to a

smaller deletions sample and deleted firms potentially un-

dergoing structural changes, we expect evidence of co-

movement in index deletions to be weaker. In addition,
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we anticipate that a significant fraction of the comovement 

may be explained by nonsynchronous trading. We dupli- 

cate the analyses in Tables 1 and 6 for index deletions, 28 

and find that the results are consistent with our results 

for index additions. Relative to Table 1 , we find that the 

deleted firms move less with the S&P500 index after dele- 

tion based on both univariate and bivariate regression co- 

efficients, and that the results are primarily derived from 

the 1979–20 0 0 period, as in Barberis, Shleifer, and Wur- 

gler (2005) . Relative to Table 6 with a matched sample 

and Dimson adjustments, we find that there is no residual 

evidence of excess comovement for the S&P500 deletions 

sample. Thus, the analysis for index deletions corroborates 

evidence for index additions to suggest an absence of ex- 

cess comovement. 

8. Conclusion 

Motivated by a simple model that captures the essence 

of the excess comovement hypothesis, we revisit the 

results of two well-known papers in the literature on 

comovement before and after S&P500 index additions 

( Barberis, Shleifer, and Wurgler, 2005 ) and stock splits 

( Green and Hwang, 2009 ). The model implies that look- 

ing at univariate regressions rather than bivariate regres- 

sions is more informative about the economic magnitude 

of the effect of interest, and in particular, that the differ- 

ences between the coefficients in univariate regressions on 

the returns of the group that the stock is leaving and the 

group that it is joining identify this effect. When we con- 

duct this empirical exercise, the evidence points strongly 

to the conclusion that the existing results are due not to 

excess comovement but to changes in the comovement of 

stocks with fundamentals. These beta changes themselves 

are a feature common to winner stocks, an empirical phe- 

nomenon the documentation of which may be new to the 

literature. By making sure to measure these fundamen- 

tal betas accurately, and controlling for this effect using a 

matched sample of winner stocks, we show that there is 

no longer any evidence of meaningful excess comovement 

from either an economic or statistical standpoint. 

Appendix A. Proofs 

Assume the driving processes for returns prior to the 

group switch are 

y t = b y f t + c 1 u 1 t + e yt c 1 > 0 

x 1 t = b 1 f t + u 1 t + e 1 t 

x 2 t = b 2 f t + u 2 t + e 2 t 

var ( e it ) ≡ σ 2 
ei var ( u it ) ≡ σ 2 

ui var ( f ) ≡ σ 2 
f 

and similarly after the group switch 

y t = b̄ y f t + c̄ 2 u 2 t + e yt c̄ 2 > 0 

x 1 t = b 1 f t + u 1 t + e 1 t 

x 2 t = b̄ 2 f t + u 2 t + e 2 t 
2 2 2 
var ( e it ) ≡ σ̄ei var ( u it ) ≡ σ̄ui var ( f ) ≡ σ̄ f . 

28 Results are not tabulated here for brevity. 
A.1. Univariate regressions 

In the univariate regressions 

y t = α + β1 x 1 t + ε t 

y t = α + β2 x 2 t + ε t , 

the probability limit of the slope coefficient estimates are 

β1 = 

cov ( y t , x 1 t ) 

var ( x 1 t ) 
β2 = 

cov ( y t , x 2 t ) 

var ( x 2 t ) 
. 

Computing the coefficients prior to and after the switch 

of stock y from group 1 to group 2: 

β
1 

= 

cov ( b y f t + c 1 u 1 t + e yt , b 1 f t + u 1 t + e 1 t ) 

var ( b 1 f t + u 1 t + e 1 t ) 

= 

b y b 1 σ
2 
f 
+ c 1 σ

2 
u 1 

σ 2 
x 1 

β̄1 = 

cov ( b y f t + c̄ 2 u 2 t + e yt , b 1 f t + u 1 t + e 1 t ) 

var ( b 1 f t + u 1 t + e 1 t ) 

= 

b̄ y ̄b 1 ̄σ
2 
f 

σ̄ 2 
x 1 

σ 2 
x 1 = b 

2 
1 σ

2 
f + σ 2 

u 1 + σ 2 
e 1 σ̄ 2 

x 1 = b̄ 2 1 ̄σ
2 
f + σ̄ 2 

u 1 + σ̄ 2 
e 1 . 

Similarly, 

β
2 

= 

b y b 2 σ
2 
f 

σ 2 
x 2 

β̄2 = 

b̄ y ̄b 2 ̄σ
2 
f 

+ c̄ 2 ̄σ
2 
u 2 

σ̄ 2 
x 2 

σ 2 
x 2 = b 

2 
2 σ

2 
f + σ 2 

u 2 + σ 2 
e 2 σ̄ 2 

x 2 = b̄ 2 2 ̄σ
2 
f + σ̄ 2 

u 2 + σ̄ 2 
e 2 . 

Assuming the parameters other than stock y ’s loadings 

on the fundamental factor and the nonfundamental group 

shocks are fixed across the two subperiods, that is, 

b 1 = b̄ 1 ≡ b 1 b 2 = b̄ 2 ≡ b 2 σ 2 
f = σ̄ 2 

f ≡ σ 2 
f σ 2 

ui 

= σ̄ 2 
ui ≡ σ 2 

ui σ 2 
ei = σ̄ 2 

ei ≡ σ 2 
ei , 

then 

β̄1 − β
1 

= 

( ̄b y − b y ) σ
2 
f 

− c 1 σ
2 
u 1 

σ 2 
x 1 

β̄2 − β
2 

= 

( ̄b y − b y ) σ
2 
f 

+ c̄ 2 σ
2 
u 2 

σ 2 
x 2 

. 

If, in addition b y = b̄ y ≡ b y , then 

β̄1 − β
1 

= − c 1 σ
2 
u 1 

σ 2 
x 1 

< 0 

β̄2 − β
2 

= 

c̄ 2 σ
2 
u 2 

σ 2 
x 2 

> 0 . 

A.2. Bivariate regressions 

Consider the bivariate regression: 

y t = α + β x 1 t + β x 2 t + ε t . 
1 b 2 b 
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The probability limits of the coefficients are 

β = ( X 

T X ) −1 ( X 

T Y ) ⇒ 

β1 b = 

cov ( y t , x 1 t ) var ( x 2 t ) − cov ( y t , x 2 t ) cov ( x 1 t , x 2 t ) 

var ( x 1 t ) var ( x 2 t ) − cov ( x 1 t , x 2 t ) 
2 

β2 b = 

cov ( y t , x 2 t ) var ( x 1 t ) − cov ( y t , x 1 t ) cov ( x 1 t , x 2 t ) 

var ( x 1 t ) var ( x 2 t ) − cov ( x 1 t , x 2 t ) 
2 

, 

where the coefficients reflect a natural symmetry. It is con-

venient to rewrite these expressions in terms of the uni-

variate coefficients defined above: 

β1 b = 

cov ( y t , x 1 t ) var ( x 2 t ) −cov ( y t , x 2 t ) corr ( x 1 t , x 2 t ) 
√ 

var ( x 1 t ) var ( x 2 t ) 

(1 −corr ( x 1 t , x 2 t ) 
2 
) var ( x 1 t ) var ( x 2 t ) 

= 

1 

1 − corr ( x 1 t , x 2 t ) 
2 

×
( 

cov ( y t , x 1 t ) 

var ( x 1 t ) 
− corr ( x 1 t , x 2 t ) 

√ 

var ( x 2 t ) 

var ( x 1 t ) 

cov ( y t , x 2 t ) 

var ( x 2 t ) 

) 

= 

1 

1 − corr ( x 1 t , x 2 t ) 
2 

( 

β1 − corr ( x 1 t , x 2 t ) 

√ 

var ( x 2 t ) 

var ( x 1 t ) 
β2 

) 

β2 b = 

1 

1 − corr ( x 1 t , x 2 t ) 
2 

×
( 

β2 − corr ( x 1 t , x 2 t ) 

√ 

var ( x 1 t ) 

var ( x 2 t ) 
β1 

) 

. 

As above, computing these values prior to and after the

switch of stock y from group 1 to group 2: 

β
1 b 

= 

1 

1 − ρ2 
x 1 ,x 2 

[
β

1 
− ρ

x 1 ,x 2 

σ x 2 

σ x 1 

β
2 

]
β

2 b 
= 

1 

1 − ρ2 
x 1 ,x 2 

[ 
β

2 
− ρ

x 1 ,x 2 

σ x 1 

σ x 2 
β

1 

] 

β̄1 b = 

1 

1 − ρ̄2 
x 1 ,x 2 

[
β̄1 − ρ̄x 1 ,x 2 

σ̄x 2 

σ̄x 1 

β̄2 

]

β̄2 b = 

1 

1 − ρ̄2 
x 1 ,x 2 

[
β̄2 − ρ̄x 1 ,x 2 

σ̄x 1 

σ̄x 2 

β̄1 

]

ρ
x 1 ,x 2 

= 

cov ( x 1 , x 2 ) 

σ x 1 σ x 2 

cov ( x 1 , x 2 ) = b 1 b 2 σ
2 
f + cov ( e 1 , e 2 )

ρ̄x 1 ,x 2 = 

cov ( ̄x 1 , ̄x 2 ) 

σ̄x 1 ̄σx 2 

cov ( ̄x 1 , ̄x 2 ) = b̄ 1 ̄b 2 ̄σ
2 
f + cov ( ̄e 1 , ̄e 2 )

Again assuming the parameters other than the weights

on the nonfundamental group shocks are fixed across the

two subperiods, 
β
1 b 

− β̄1 b = 

1 
1 −ρ2 

x 1 ,x 2 

[(
β

1 
− β̄1 

)
− ρx 1 ,x 2 

σx 2 

σx 1 

(
β

2 
− β̄2 

)]
> 0

β
2 b 

− β̄2 b = 

1 

1 − ρ2 
x 1 ,x 2 

×
[(

β
2 

− β̄2 

)
− ρx 1 ,x 2 

σx 1 

σx 2 

(
β

1 
− β̄1 

)]
< 0 . 

If we further assume 

σ 2 
e 1 = σ 2 

e 2 = 0 c 1 = c̄ 2 = 1 b y = b 1 = b 2 = 1 , 

then 

β
1 

= 

σ 2 
f 

+ σ 2 
u 1 

σ 2 
f 

+ σ 2 
u 1 

= 1 β̄1 = 

σ 2 
f 

σ 2 
f 

+ σ 2 
u 1 

β
2 

= 

σ 2 
f 

σ 2 
f 

+ σ 2 
u 2 

β̄2 = 

σ 2 
f 

+ σ 2 
u 2 

σ 2 
f 

+ σ 2 
u 2 

= 1 

ρx 1 ,x 2 = 

σ 2 
f √ 

(σ 2 
f 

+ σ 2 
u 1 

)(σ 2 
f 

+ σ 2 
u 2 

) 

β
1 b 

= 

1 

1 − ρ2 
x 1 ,x 2 

[ 

1 − ρx 1 ,x 2 

√ 

σ 2 
f 

+ σ 2 
u 2 

σ 2 
f 

+ σ 2 
u 1 

σ 2 
f 

σ 2 
f 

+ σ 2 
u 2 

] 

= 

1 

1 − ρ2 
x 1 ,x 2 

[
1 − ρ2 

x 1 ,x 2 

]
= 1 

β
2 b 

= 

1 

1 − ρ2 
x 1 ,x 2 

×

⎡ 

⎣ 

σ 2 
f 

σ 2 
f 

+ σ 2 
u 2 

−
σ 2 

f √ 

(σ 2 
f 

+ σ 2 
u 1 

)(σ 2 
f 

+ σ 2 
u 2 

) 

√ 

σ 2 
f 

+ σ 2 
u 1 

σ 2 
f 

+ σ 2 
u 2 

⎤ 

⎦ 

= 0 . 

Similarly, 

β̄1 b = 0 β̄2 b = 1 . 
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